
N-dimensional nonlinear prediction with MLP

Marcos Faúndez-Zanuy

Escola Universitària Politècnica de Mataró
Universitat Politècnica de Catalunya (UPC)

Avda. Puig i Cadafalch 101-111, E-08303 Mataró (BARCELONA) SPAIN
faundez@eupmt.es

Abstract

In this paper we propose a Non-Linear Predictive
Vector quantizer (PVQ) for speech coding, based on
Multi-Layer Perceptrons. With this scheme we have
improved the results of our previous ADPCM coder
with nonlinear prediction, and we have reduced the bit
rate up to 1 bit per sample.

1. Introduction

In [1] we proposed a scheme for nonlinear vectorial
predictor based on neural nets. In [2] we applied the
predictor for speech coding. This scheme is known as
Non-Linear Predictive Vector Quantization [3, chap.
13] NL-PVQ. This system is similar to an ADPCM
speech coder, where the NL predictor replaces the LPC
predictor in order to obtain an ADPCM scheme with
non-linear vectorial prediction. In addition, the scalar
quantizer is replaced by a vectorial quantizer.
We have checked that increasing the dimension of the
predicted vector it is possible to increase the SEGSNR
and to extend the operating range to lower bit rates.

2. Vectorial nonlinear prediction

Our nonlinear predictor consists on a Multi Layer
Perceptron (MLP) with 10 inputs, 2 neurons in the
hidden layer, and N outputs, where N is the dimension
of the vectors (see figure 1). In this paper we use
N=1,2..6. The selected training algorithm is the
Levenberg-Marquardt, that computes the approximate
Hessian matrix, because it is faster and achieves better
results than the classical back-propagation algorithm.
We also apply a multi-start algorithm with five random
initializations for each neural net. In [4] we studied
several training schemes, and we concluded that the
most suitable is the combination between Bayesian
regularization and a committee of neural nets (each
neural net is the result of training one random
initialization).
We have checked the vectorial prediction in several
scenarios:
1. Scalar prediction and scalar quantization: this

scheme is equivalent to a neural net trained with
hints (N outputs are used during training phase, but
only the first output is used for prediction). Thus,

we train a vectorial predictor but we use it as a
scalar predictor.

2. Vectorial prediction and scalar quantization: all the
neural net outputs are used for prediction, but the
adaptive scalar quantizer based on multipliers [6]
is used consecutively in order to quantize the N
output prediction errors. Although this quantizer
has been tuned up for linear predictors, we have
found in our previous work that it is also suitable
for nonlinear prediction and it is able to remove
the first order dependencies between consecutive
samples [3].

3. Vectorial prediction and vector quantization: same
situation than the previous scenario, but the scalar
quantizer is replaced by a VQ. In [3] we obtain
that this scheme with N=2 was unable to
outperform the scalar quantizer, and that first order
dependencies exist. In that paper we conclude that
the system should be improved with VQ memory
quantizer or increasing the vector dimension. In
this paper, we have studied the results for higher
vector dimensions (N>2) and we have improved
the SEGSNR with smaller bit rates.

Figure 1. Vectorial predictor based on a MLP

2.1. Experiment conditions

We have used the same database than in our previous
papers [1],[2],[4], which consists on 8 speakers (4 male
and 4 female). The number of inputs is P=10, and the

input layer

hidden layer

output layer

inputs:

outputs

x[n-P] x[n-P+1] x[n-1]

x[n] ... x[n+N-1]

number of outputs is variable in the range 1 6N≤ ≤ .
The frame length is 200 samples. In order to obtain
always the same number of training patterns, the
following input/output patterns have been used:

For i=0:frame_length−1,

{ }
{ }

() [], , [1],

() [], [1]

input i x n i P x n i

output i x n i x n i N

= + − + −

= + + + −

�

�

end

Thus, there is a shift of one sample between consecutive
input patterns during the training of the neural net (if the
shift would be N samples, the number of training patters
would decrease and couldn’t be enough for high values
of N.
Obviously we have slightly modified the frame length
for N=3 (201 samples) and N=6 (204 samples), in order
to achieve an exact division of frame_length by N.
On the other hand, the shift between consecutive input
patterns when the neural net is acting as a predictor is
equal to N.
This is a backward-adaptive ADPCM scheme. Thus, the
coefficients are computed over the previous frame, and
it is not needed to transmit the coefficients of the
predictor, because the receiver has already decoded the
previous frame and can obtain the same set of
coefficients.
In [1] we showed that the computation of a vectorial
predictor based on a MLP is not critical. This has been
checked using the scenario number 1 of section 2. In
this situation the vectorial prediction training procedure
can be interpreted as a particular case of neural net
training with output hints. We obtained similar
performance than a neural net with only one output
neuron and same number of neurons on the input and
hidden layers. Of course, consecutive samples are
highly correlated, so really the neural net is not bounded
to learn a significative amount of “new information”.
Thus, the generalization of the scalar NL predictor to a
NL vectorial prediction does not imply a great
difference with respect to the scalar predictor.

3. Vectorial quantizer

In order to design a vectorial quantizer (VQ) it is need a
training sequence. The optimal design procedure must
be iterative [4], because in a PVQ scheme the VQ is
inside the loop of the ADPCM scheme. In order to
achieve a "universal VQ", it should be obtained with as
many speakers and sentences as possible and evaluated
with a different database. We have used only one
speaker for VQ generation and 7 different speakers for
PVQ system evaluation. We have used two different
methods for codebook generation given a training
sequence: random initialization plus the generalized
Lloyd iteration, and the LBG algorithm [2].
We have used the following procedure:

1. A speech database is PVQ coded with a vectorial
predictor and an adaptive scalar quantizer based on
multipliers [6]. Although the prediction algorithm
is vectorial, the residual error is scalar quantized,
applying the scalar quantizer consecutively to each
component of the residual vector.

2. We have used the residual signal of one sentence
uttered by a female speaker (approximately
20000/N vectors) and 3 quantization bits (Nq=3) as
a training sequence.

3. A codebook is designed for VQ sizes in the range
Nq=[5, 9]. Thus, the bit rate is Nq/N bits/sample.

It is interesting to observe that although the same
sentence would be used two times the prediction error
would be different, due to the random initialization of
the neural net weights. This does not happen with the
linear prediction coefficients, because they are obtained
with a deterministic procedure.

4. Results

This section summarizes the results for the different
scenarios proposed in section 2.

4.1. Scalar prediction and scalar quantization

This situation is equivalent to a neural net trained with
hints on the output. This experiment is interesting in
order to evaluate the ability of the neural net to work
fine when the number of output neurons is increased.
Table one shows the results for several combinations of
N and Nq, where N is the dimension of the output
predicted vectors, and Nq is the number of quantization
bits of the scalar quantizer.

Table 1: SEGSNR with scalar prediction & quantizer.

N=1 N=2 N=3 N=4 N=5 N=6 Nq

m σ m σ m σ m σ m σ m σ

2 14.53 4.9 14.20 5.1 13.96 5.0 13.76 5 13.51 5 13.34 5.1
3 20.55 5.9 20.35 5.8 20.22 5.8 19.97 5.7 19.77 5.6 19.46 5.5
4 25.78 6.5 25.55 6.3 25.13 6.3 24.98 6.3 24.81 6.1 24.55 6.1
5 30.45 6.8 30.35 6.7 30.08 6.5 29.67 6.0 29.58 6.3 29.41 6.3

We observe that there is a slight degradation on the
SEGSNR when N is increased. We will check in the
next sections that this effect can be compensated by the
improvement that introduces the vectorial quantizer.

4.2. Vectorial prediction and scalar quantization

We apply the adaptive scalar quantizer based on
multipliers successively to the different vectorial
predictor outputs. Table 2 summarizes the results for
several combinations of N and Nq.
We can observe that the reduction on SEGSNR is
greater than in the previous scenario. Thus, the scalar
quantizer can not to take advantage of the vectorial
prediction, and a different quantization scheme must be
evaluated.

Table 2: SEGSNR with vectorial Prediction and scalar
quantization.

N=2 N=3 N=4 N=5 N=6 Nq

m σ M σ m σ m σ m σ

2 12.86 4.5 11.65 4.10 11.21 3.93 10.68 3.87 10.38 3.67
3 18.61 5.17 17.43 4.73 16.95 4.34 16.57 4.25 16.13 4.24
4 23.25 5.33 22.3 4.97 21.98 4.55 21.74 4.35 21.50 4.47
5 27.7 5.52 26.96 5.13 26.81 4.82 26.58 4.62 26.22 4.71

4.3. Vectorial prediction and vectorial quantization

This situation corresponds to the Non-linear vectorial
predictor with a vectorial quantizer, where N is the
dimension of the output predicted vectors and Nq is the
number of bits of the codebook. Thus, the bit rate is
Nq/N.
Table 3 summarizes the results for several values of Nq
and N. In order to compare the SEGSNR at the different
bit rates, we have ploted all the results in a same figure
(see fig. 2).

Table 3: SEGSNR with vectorial prediction &
quantizer.

Nq=5 Nq=6 Nq=7 Nq=8 Nq=9 N

m σ m σ m σ m σ m σ

2 15.8 6.9 19 5.9 21.4 6.1 25 5.7
3 9.21 6.61 12.14 5.72 14.63 5.05 16.77 4.88 18.34 4.87
4 7.81 6.02 10.16 5.91 12.15 4.89 13.50 4.53 14.99 4.68
5 8.52 6.17 10.70 5.51 12.37 5.02 13.83 5.08 14.38 5.32
6 6.96 4.79 8.14 4.49 9.63 4.24 10.46 4.29 11.42 4.58

It is important to take into account that although it
seems that for a given Nq the SEGSNR is reduced when
N is increased, the bit rate is also reduced, because the
number of bits of each codeword must be split by the
vector dimension N. Thus, for a given bit rate, the
SEGSNR is higher if N is increased (see figure 2).

5. Study of the quantizer

In order to study the quantizer, we propose to evaluate
the zero order entropy H0(X) and the first order entropy
H1(X) of the codewords, where:

• ∑
=

=
M

i i
i P

PxH
1

20
1

log)(

• () () ()∑∑
= =

=
M

j

M

i
jiP

ijPXH
1 1

21
1

log

• Pi is the probability of the codeword i.
• ()jiP is the probability of the codeword i knowing

that the previous codeword has been the codeword j.

It is important to take into account that this formulation
is valid for scalar and vectorial quantization. The
unique difference is that in the former case each

codeword is equivalent to one sample, while in the
latest one each codeword is equivalent to a vector
(group of samples).
It would be interesting to study higher order entropies,
but the amount of required data and the computational
burden makes this evaluation unpractical.
The better designed the quantizer, the higher the
entropy, because all the codewords have the same
probability of being chosen. In this case, qNXH ≅)(0 .

Otherwise, the outputs of the quantizer (codewords) can
be encoded with a lossless method (for example
Huffmann) in order to reduce the data rate.
On the other hand, if)()(01 XHXH << means that

there is a strong correlation between consecutive
quantizer outputs, and two observations can be made:

1. The outputs of the quantizer (codewords) can be

encoded with a lossless method (for example
Huffmann) in order to reduce the data rate.

2. The quantizer can be improved taking into account
the previous sample (using a memory quantizer).
The goal is to obtain qNXHXH ≅≅)()(01

(remember that qNXHXH ≤≤)()(01 by

definition). In this case, all the codewords are equal
probability used, and [] [] [])()1(nxPnxnxP ≅− , so

the quantizer has removed the first order
dependencies, and no improvement is achieved by
means of a Huffmann code.

Our goal is the latest observation, rather than the former
one, because the better the quantizer, the better the
prediction (both systems are in a closed loop). If the
entropy is smaller than Nq means that some codewords
are not used, so the useful number of quantization bits is
smaller than Nq.
Table 4 shows the results using one sentence of the
database. Special care must be taken in order to obtain a
good estimation of the probabilities and conditional
probabilities, because the number of different

codewords is Nq2 , and the higher the number of
different possible codewords, the higher the number of
codewords we need to obtain a good estimation of the
probabilities of these codewords. Specially for the first
order entropy, because the number of different

combinations is NqNqNq 2222 =× . In [2] we
experimentally shown than it is easy to compute the
zero and first order entropies up to Nq=5 (with a
significative increase on the number of codewords used
to compute the statistics did not imply a modification of
the results). Thus, it is important to take into account
that H1 values are underestimated for Nq>5 due to the
limited amount of samples used to compute ()jiP .

Table 4. H0 and H1 of the codewords
Nq=5 Nq=6 Nq=7 Nq=8 Nq=9 N

Ho H1 Ho H1 Ho H1 Ho H1 Ho H1

3 3.98 3.23 5.13 3.81 6.29 3.91 7.26 3.6 8.02 3.06
4 3.87 3.04 5.01 3.66 6.43 3.96 7.37 3.55 8.09 3.04
5 4.25 3.32 5.49 3.95 6.73 3.84 7.73 3.35 8.48 2.67
6 4.40 3.48 5.54 3.91 6.57 3.89 7.34 3.50 8.08 2.96

6. Conclusion

In this paper we have proposed a Non-linear Predictive
Vector Quantization speech encoder based on a
multilayer perceptron. We think that this scheme could
be a preliminar step towards a more sophisticated coder
like the CELP scheme.
We have also proposed a methodology for the analysis
of a quantizer, based on two propositions:
1. If the quantizer is well designed, the zero order

entropy will be approximately equal to the number
of quantization bits (that is, all the quantization
outputs have the same probability).

2. If the quantizer exploits the correlation between
consecutive outputs, the first order entropy will be
approximately the same than the zero order
entropy. Otherwise, it will be smaller.

In our previous paper [4] we had shown that an
ADPCM scheme with scalar nonlinear predictor
outperforms the same scheme with scalar linear
predictor. In this paper we have shown that a vectorial

nonlinear predictor outperforms a scalar nonlinear
predictor for N=5. This result is analogous to the
reported in [5].
On the other hand, we have reduced the bitrate up to 1
bit per sample, while the classical scalar ADPCM
scheme is over 2 bits per sample.

7. References

[1] M. Faúndez "Vectorial Nonlinear prediction with
neural nets". LNCS 2085 Vol. II, Springer Verlag. Pp.
754-761, IWANN’2001.

[2] M. Faúndez “Non-linear predictive vector
quantization of speech”. EUROSPEECH’2001,
Aalborg.

[3] A. Gersho & R. M. Gray, "Vectorial Quantization
and signal compression". Ed. Kluwer 1992.

[4] M. Faúndez-Zanuy, "Nonlinear predictive models
computation in ADPCM schemes". Vol. II, pp 813-
816. EUSIPCO 2000, Tampere.

[5] V. Cuperman & A. Gersho, "Vector Predictive
coding of speech at 16 kbits/s". IEEE Trans. on
Comm. vol. COM-33, pp.685-696, July 1985.

[6] N. S. Jayant & P. Noll "digital compression of
waveforms". Ed. Prentice Hall 1984.

Acknowledgement

This work has been supported by the Spanish grant
CICYT TIC2000-1669-C04-02

1 1.5 2 2.5 3 3.5 4
6

8

10

12

14

16

18

20

22

24

26

bits per sample

S
E

G
S

N
R

1D
2D
3D
4D
5D

Figure 2: SEGSNR as function of the bitrate.

