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ABSTRACT

The paper presents a statistical analysis of neural network
(NN) inversion of Hammerstein systems. The system model
is composed of a memoryless non linearity g(.)  followed by a
linear filter H. The inverse system is a nonlinear Wiener
system consisting of an adaptive filter Q followed by a
memoryless perceptron. The adaptive filter Q aims at
inverting the linear part of the system (adaptive
deconvolution). The perceptron aims at inverting the
memoryless function (adaptive function inversion). The
adaptive system is trained using the backpropagation
algorithm (BP). The paper proposes recursions for the mean
weight behavior during the learning process. The expression
of the mean squared error (MSE) is given as function of the
Hammerstein system parameters, the adaptive filter
coefficients and the NN weights. The paper is supported with
illustrations and computer simulations which show good
agreement with theoretical analysis.

1 Introduction

Neural networks have been successfully applied to adaptive
inversion of nonlinear systems (see e.g. [3, 4]). It is important
then for the user to understand their learning behavior and
estimate their performance.
This paper proposes a statistical analysis of NN inversion of
Hammerstein systems (figures 1, 2). The unknown system to
be inverted is composed of a memoryless non linearity g(.)
followed by a linear filter H. This model can be found in a
wide range of engineering problems such as satellite
communications, microwave theory, adaptive control,
biomedical applications, etc. Finding the inverse of the
system (which is a nonlinear deconvolution problem) allows
to extract the transmitted signal x(n) from the distorted output
signal y(n).
 The input sequence x(n) is an independent gaussian sequence

with zero mean and variance σ
2

x
. The system output is

corrupted by a zero mean gaussian noise n0(n)  with variance

σ
2

0 . The system output at time n is expressed as:

)()()( 00 nnnyny += . )(0 ny  is the output in the

noiseless case: )()(0 nGHny t= , where
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memory of the FIR filter H.
The inverse of the Hammerstein system (which is assumed to
be invertible) is a Wiener system, i.e. a linear system
followed by a memoryless nonlinearity (figure 2). In the ideal
case, the inverse of the linear part is )(/1 zH  and the inverse of

the nonlinear part is )(1 xg − . In practical engineering

problems these inverses are not known and have to be
approximated.
In this paper, the inverse model is adaptively approximated

by a linear FIR filter t
Nq

qqqQ ],...,,[ 21= , followed by a

memoryless perceptron (figure 3). The adaptive filter Q aims
at inverting the linear part of the system (adaptive
deconvolution), whereas the perceptron aims at inverting the
memoryless function (adaptive function inversion).
The perceptron is composed of a scalar input (which is the
output of the Hammerstein system y(n)), M neurons in the
first layer, and a scalar output neuron. The NN output is
expressed then as:
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where [ ]t
QNnynynynY )1(.....)1()()( +−−= ,  { }kw  and { }kb ,

k=1,…,M, are the weights and bias terms of the input layer

neurons, respectively, and { }kc , k=1,…,M, are the weights of

the output neuron.  f  is the first layer activation function.
The adaptive system is trained using the backpropagation
algorithm (BP), which is a gradient descent algorithm that
minimizes the error between the desired output (which is a
known delayed transmitted sequence, )( ∆−nx ) and the

adaptive system output s(n): 22 ))()(()( nsnxne −∆−=  .

The adaptive system parameters are updated at each iteration
n as follows, where µ  is a small positive parameter:
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The analysis will be done for any functions g(x) and f(x). For
the illustrations, we will take the following specific functions:
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)( σ . This function is a reasonable model for

saturation-type nonlinearities used in several applications.

For f(x), it will be taken as: ( ) ∫ 
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This is a sigmoid which has the same shape as other
sigmoidal functions used in multi-layer neural networks.
The MSE surface and the mean weight transient behavior are
studied is sections 2 and 3, respectively. Finally, computer
simulations are presented in section 4 to support the
theoretical results.

2 MSE surface and optimal Solution

2.1 Results of linear deconvolution of
Hammerstein systems

This section recalls the results of linear deconvolution of
Hammerstein systems. This problem has been studied in [5]
where a linear filter Q (alone), trained by the LMS algorithm,
has been used for the adaptive deconvolution. In some
applications, a linear filter is preferable to the nonlinear
Wiener system, especially when the nonlinear distortions
introduced by g(.) have small or minor effects on the received
signal (e.g. in satellite communications when simple
modulations schemes like BPSK are used [1]).
The results of [5] demonstrate that the adaptive filter
converges to PRQ yoptL

1−= . (Subscript L refers to the case

where the adaptive system is composed of a linear filter Q
only.) P is the correlation vector defined by:

))()(( nYnxEP ∆−= , and yR  is the correlation matrix of

vector Y.

It can be demonstrated that: 
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determined by evaluating the correlation matrix of G(n).  For
the specific function g(x) mentioned in the introduction, we
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 the correlation matrix of
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that, in the noiseless case, the optimal deconvoluting filter of
the NL system is a scaled version of the optimal
deconvoluting filter of the linear system: 
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2.2 MSE surface

In what follows we consider the system of figure (3). We
denote by MSEM the MSE when the NN has M neurons in the
first layer. The MSE can be expressed as:
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For the special functions f(x) and g(x) mentioned in the
introduction, G and F can be approximated (under the
assumption of a soft nonlinearity g(x), i.e. large σ ) as:
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Note that in the biasless case (i.e. all the bias terms are set to
0), closed form expression can be obtained:
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Therefore, in the biasless case we have:
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2.2.1 Stationary points of the perceptron:
The stationary points are obtained by setting the gradient of
the MSE surface to zero:
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In the biasless case, closed form expressions of these
equations can be obtained:
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These equations can be solved numerically in order to
determine the optimal weights and the local minima.

2.2.2 Stationary points of the linear adaptive filter
Q:
The optimal filter 

optQ  is obtained by setting to zero the

gradient of the MSE surface with respect to Q. It can be
demonstrated that optQ  is a scaled version of the filter

obtained in the linear deconvolution case (section 2.1):

Loptopt QQ γ= , where PRQ yLopt
1−= .

The scale factor is : 
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PQ t=ρ . (Note that factor γ  can be easily determined in a

closed form in the biasless case by calculating these
derivatives.)
This important result can be exploited in order to improve the
algorithm convergence speed and reduce the computational
time, by splitting our problem into two parts:

1- Linear deconvolution: The adaptive system is  composed
of a linear filter Q trained with the LMS algorithm.

2- Nonlinear memoryless function inversion : We start
phase 2 when the filter of phase 1 converges. We freeze the
converged filter, and add a memoryless perceptron. Only the
perceptron is trained. Note that factor γ  can be seen as a

normalization factor.
Note also that, in the case of a simultaneous adaptation of
filter Q and the perceptron, and if the latter is initialized with
small values, then filter Q will be the first to converge (i.e. it

converges rapidly to a scaled version of LoptQ ), the

perceptron weights will take much longer time to converge.

3 Mean weight behavior

The mean weight transient behavior is determined by the
calculation of the expectations of the updating equations. We
take the following notations: ( )( ) ( )nwnwE kk = ,

( )( ) ( )nbnbE kk = , ( )( ) ( )ncncE kk = , ( )( ) ( )nQnQE = . By taking the

expectations of both sides of the updating equations of
section 1, and assuming that the updating rate µ  is small, we

obtain the following mean weight recursions:

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )].2

1
[21 ,

,1

,

nw

F
nc

nw

F
nc

nw

G
ncnwnw

i

ii
i

M

ikk i

ki
k

i

i
iii ∂

∂
−

∂

∂
−

∂
∂

+=+ ∑
≠=

µ

( ) ( ) ( ) ( ) ( ) ( ) ( )]2
1

)([21 ,

,1

,

nb

F
nc

nb

F
nc

nb
G

ncnbnb
i

ii
i

M

ikk i

ki
k

i

i
iii ∂

∂
−

∂
∂

−
∂
∂+=+ ∑

≠=

µ

( ) ( ) ( ) ].[21
1

,∑
=

−+=+
M

k
kikiii FncGncnc µ

( ) ( ) ( )])
2
1

(2[21
1

2
1

2
,2

2
,

1
2 nQR

G
c

F
c

F
ccP

G
cnQnQ y

M

k r

k
k

M

k r

kk
k

jk r

jk
jk

M

k r

k
k ∑∑∑∑

==≠= ∂
∂

+
∂
∂

+
∂
∂

−
∂
∂

+=+
σσσσ

µ

In the biasless case, closed form expressions of these
recursions can be obtained (note that all the weights in the
RHS of the equations are at time n ):
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(Note that all variables in the RHS of the equations are at
time n.)

4 Application and Simulation Examples

The filter-NN structure has been applied for the inversion of a
Hammerstein system. The following parameters have been
taken: 15.01)( −+= zzH , 22 =σ , 12 =xσ , 0025.02

0 =σ ,

0005.0=µ , and 3=∆ . We have implemented a 5-tap filter,

followed by a 3 neuron biasless perceptron. The learning
curve (MSE versus time), and the mean weight transient
behavior have been estimated over 100 Monte Carlo (MC)
runs and compared to the theoretical expressions (figures 4 ,



5 and 6). The simulations show good fit between the theory
and MC estimations.

5 Conclusion
The paper presented a statistical analysis of neural network
inversion of Hammerstein systems. The backpropagation
algorithm was used for the learning process.
The paper studied the MSE surface of the adaptive system
and proposed recursions for the mean weight behavior.
Computer simulations showed good agreement between MC
estimations and theoretical analysis.
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Figure 3: Neural Network structure.
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