
NONLINEAR PREDICTION OF INFRARED DATA BY THE 

WIENER SYSTEM 

 

P. Bernabeu, I.Bosch, L.Vergara 

Department of Communications, EPSA, University Polytechnic of Valencia,  

Plaza Ferrándiz-Carbonell s/n 03801, Alcoi, Alicante, Spain 

Tel: +34 96 6528512; Fax: +34 96 6528461 

e-mail: pbernabe@dcom.upv.es
 

 

ABSTRACT 

 

We consider the use of the Wiener system to perform 

nonlinear prediction. In this paper we propose a technique 

to retain the simplicity of the linear prediction by including 

a memoryless nonlinear function. The design of this later is 

approached from a Bayesian perspective: we look for the 

conditional mean of the predicted value, given the output of 

the linear predictor. Two techniques are proposed: the first 

one makes use of a closed form solution where some 

higher-order statistics are to be estimated. The second one 

is a direct sample estimate of the conditional mean given a 

data training set. The techniques are applied to improve the 

signal to noise ratio in the automatic detection of fire by 

infrared signal processing. 

 

1. INTRODUCTION 

 

The Wiener system has been extensively applied in the 

area of system identification (see [1]-[4] for illustration of 

some recent works on this topic). It allows a simple 

generalization of a linear identification system by including 

at the output a memoryless nonlinear function. Using only 

one Wiener system we may obtain significant improvements 

with respect to the linear case, depending on the statistical 

distribution of the underlying stochastic processes. On the 

other hand prediction is a key area of signal processing and 

time series analysis. In an statistical context, the minimum 

mean-squared error (MMSE) prediction is the conditional 

mean of the random variable corresponding to the predicted 

sample given the past samples from which prediction is to 

be made. Assuming Gaussianity, the conditional mean is a 

linear function of the samples, and we have several different 

standard methods for computing the predictor coefficients. 

However, there are many applications where Gaussianity is 

not a realistic hypothesis, then some non-linear schemes are 

to be devised. 

Here we propose the use of the Wiener system (Figure 1) 

to reduce in a simple manner the linear MMSE (LMMSE) 

which can be achieved by linear prediction. The linear part 

of the Wiener system is a LMMSE predictor followed by 

the memoryless nonlinear function. The design of this later 

follows a Bayesian approach: we estimate the conditional 

mean of the predicted value, given the output of the linear 

predictor. 

 

 

 

 

 

 

Figure 1: Proposed scheme for nonlinear prediction 

 

In the next section we present two possible ways for 

designing the memoryless nonlinear estimator and in the last 

section we apply the proposed structure to a real problem: 

fire detection by infrared radar, showing the improvement 

with respect to the classical linear solution. 

Part of this work has been presented by the authors in 

[5]. 

 

2. MEMORYLESS FUNCTION DESIGN 

 

Let us assume that we have a training sample record to be 

used for designing the predictor. The linear part of the 

structure may be devised following any of the standard 

methods (for example we may estimate the autocorrelation 

function and then solve the Wiener-Hopf equations, for a 

given predictor dimension). Relative to the nonlinear part 

we propose two alternatives. 

The first one is a direct sample estimate of the 

nonlinearity. Let xp(n+l) be the output of the linear 

predictor (i.e., xp(n+l) is the linear prediction of x(n+l) 

from the past samples x(n) x(n-1) ...x(n-N+1), where n is 

the linear predictor order and l the prediction time lag), we 

have to implement the conditional mean. 
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Assuming stationarity, a sample estimate of G(.) may be 

made in the following manner. We apply the linear 

predictor to the training record, thus generating a record of 

sample predictions. The original samples and its 

corresponding predictions are sorted in ascending order, 

then a moving average (moving conditional mean estimate) 

is made on the sorted original data to generate smoothed 

estimates of G(.) at the corresponding values given by the 

sorted sample predictions. The width and shape of the 

moving window controls the degree of smoothing to be 

obtained in the G(.) estimate. On the other hand, the 

function G(.) at any desired value may be computed through 

interpolation of the estimated values.  
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The above procedure is impractical in the general case of 

trying to estimate the conditional mean of x(n+l) given de 

past samples x(n) x(n-1) ... x(n-N+1), due to the 

multidimensionality of the problem. The nonlinearity 

memoryless condition allows a practical possibility for 

including it in a calibration procedure by using a training 

sample record. 

A closed form solution for the nonlinear estimator is 

always desirable. In [6] the author presents a general 

formula for the (multidimensional) conditional mean that 

may be used for a polynomial approximation of the 

nonlinearity. We particularize (see appendix A) the 

proposed formula for our one-dimensional case, arriving to 

(for simplicity in the notation we will call in the following 
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and H
m
 is the Hermite polynomial of order m. 

In (2) we have to assume that x
p
 is a zero-mean, variance 

normalized, stationary (no n-dependence of the involved 

cross-cumulants) Gaussian sequence. Note that assuming 

Gaussianity for the prediction x
p
, is a realistic hypothesis, 

because x
p
 is the output of the linear prediction filter: a 

linear combination of N past samples of the original 

sequence. For a large enough N  value (for the application 

presented in the last section we have observed that N>3 is 

enough to obtain approximate Gaussian predictions), the 

central limit theorem guarantees Gaussianity.  

To be more specific, a third-order approximation of (2) 

(i.e., we consider only the first three terms in the sum) leads 

to the following polynomial approximation (see Appendix 

A): 
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where [ ]i

pi
xxEa =  are the cross-moments to be estimated 

from the training data. 

 

3. APPLICATION TO INFRARED RADAR DATA 

 

In [7] the authors present a real data application: fire 

detection in a wide area by infrared radar. A general scheme 

for automatic detection is presented where prediction of the 

infrared level in a given cell, from the values corresponding 

to the same cell in past scanning times is a key procedure to 

improve signal to noise ratio and then to improve the 

probability of detection. The prediction is subtracted from 

the running value and then detection is made based on the 

prediction residue. In such a way we take advantage of the 

highly correlated environment among the different scanning 

times, thus partly suppressing the infrared background 

noise. It is shown in [7] that the involved signals are not 

always Gaussian distributed, so we can try to improve the 

quality of the prediction by a nonlinear predictor. 

On the other hand, prediction lags greater than 1 are 

necessary to perform automatic detection from a vector 

whose elements are values measured on the same cell in 

several consecutive scanning times. In this way, it is 

possible to incorporate in the detection, information about 

the expected evolution (usually a slow increasing) of an 

uncontrolled fire. 

We have considered the possibility of applying a Wiener 

system to this practical problem.  

The data were collected by a passive infrared radar, 

located in a mountainous area in the Southeast of Spain 

(Alcoy, Alicante). The sensor model was Thermoprofile 6 

HT (AGEMA Infrared Systems). Electronic range scanning 

and an azimuth mechanical system were used. The recorded 

data depends on three variables: time (or scan number), 

azimuth and range. We are going to predict in the time 

domain so we can associate the variable n to the 

corresponding scan number. 

We have selected a data block for training and testing the 

nonlinear predictor. This implies that stationarity is 

assumed in the data block as a whole. The selected data 

block is formed by 400 records of 21 samples each. In a 

given record, each sample corresponds to a particular cell in 

a given scan number (the scan period is 1 minute, the actual 

times were 17:00h to 17:20h, so we have 21 samples in 

each record). The 400=100x4 records correspond to 100 

consecutive ranges with respect to the normal to the sensor 

and advancing in taken in 4 consecutive azimuths (starting 

at 7,3 degrees series of 0.23 degrees). The first range 

corresponds to approximately 10 Km in distance and the last 

one to approximately 900 m in distance. We have used the 

records corresponding to the two first azimuths for training 

(i.e., for estimating the linear predictor coefficients and the 

nonlinearity) and the records corresponding to the two last 

azimuths for testing the predictor performance, i.e., for 

estimating the prediction-error mean-power (PEMP). We 

show in figure 2a the normalized PEMP (NPEMP) obtained 

with the testing data block, for N=8 and different l values, in 

figure 2b, for N=6 and different l values, figure 2c, for N=4 

and different l values, and figure 2d, for N=2 and different l 

values. Normalization is made by dividing PEMP by the 

mean-power of the original data x. Finally, the figure 3 

shows the memoryless nonlinear function estimated from 

both the direct sample estimate (the moving window was 

100 sample duration) and the third-order polynomial 

approximation of equation (3) (figure 3a, the linear 

predictor order is N=8, figure 3b is N=6, figure 3c is N=4 

and figure 3d is N=2 , and the prediction lag is l=6 in all 

cases). The curves are superimposed on the joint 

distribution f(x,xp) of the corresponding training data. 

We can clearly observe the advantage of including the 

nonlinear system when N increases, and to a certain N when 

l value increases. 
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Figure 2. Normalized Prediction Error Mean Power for different 

values of the prediction time lag l. (a) N=8 in all the cases (b) 

N=6 in all the cases, (c) N=4 in all the cases, and (d) N=2 in all 

cases. 

* Only the linear predictor 

o Linear predictor plus memoryless nonlinearity, third-order 

polynomial approximation of the conditional mean 

+ Linear predictor plus memoryless nonlinearity, sample 

estimate of the conditional mean. 
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Figure 3. Joint distribution of x, xp. for the training data. 

Superimposed are the designed memoryless nonlinear function: 

Direct sample estimate (solid line) and third-order polynomial 

fitting equation (3) (dashed line). (a) for N=6 and l=6, (b) for 

N=4 and l=6 and (c) for N=2 and l=6. 

Otherwise, despite the N value increases, only if we use 

the linear predictor the NPEMP value increases, while this 

last value reminds if we include a nonlinear block. 

(a) 

(c) 

(d) 

(a) 

(b) 

(d) 

(c) 

(b) 



As expected, the best performance is obtained with the 

sample estimate of the conditional mean, the polynomial 

approximation exhibits an intermediate behavior which 

could be improved by increasing the approximation order. 

Similar results have been obtained on this application 

working with other data blocks. 

 

4. CONCLUSIONS 

 

A simple procedure for improving linear prediction has 

been presented. The memoryless nonlinear function may be 

directly calibrated from a training block by estimating the 

conditional mean of the nonlinear prediction given the 

linear one. A sample estimate is always possible in the 

above indicated form, but, most interesting, a closed form 

polynomial approach based on estimates of higher-order 

statistics is also possible. The practical interest in a real data 

application has been demonstrated. 

 

5. APPENDIX A 

 

The general multidimensional expression for the conditional 

mean of a scalar random variable y, given a vector of 

random variables [ ]T
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Now, let x and xp be scalar random variables, then, 

equation (A1) is simply reduced to, 

[ ] ( )

( )
p

p

p

pp

p

p

pp

xG
xp

xp
xxxcum

xp

xp
xxcumxcumxxE

=++

−=

K

)(

)(''
),,(

!2

1

)(

)('
,)(

  (A2) 

if xp is Gaussian  
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Then we can write (A2) in the form 
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where 
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In our case, we have to assume that x and xp are zero-

mean, and unit variance , then: 
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with [ ]i

pi
xxEa = . Therefore the third-order approximation 

in (A4) is, 
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Hermite polynomials can be generated using the recursion 

equation. 
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Finally the equation (3) follows 
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