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ABSTRACT 
 

Principal Components Analysis (PCA) is a very important 
statistical tool in signal processing, which has found successful 
applications in numerous engineering problems as well as other 
fields. In general, an on-line algorithm to adapt the PCA network to 
determine the principal projections of the input data is desired. The 
authors have recently introduced a fast, robust, and efficient PCA 
algorithm called SIPEX-G without detailed comparisons and 
analysis of performance. In this paper, we investigate the 
performance of SIPEX-G through Monte Carlo runs on synthetic 
data and on realistic problems where PCA is applied. These 
problems include direction of arrival estimation and subspace 
Wiener filtering. 
 
1 INTRODUCTION 

 
Principal Components Analysis (PCA) established its significance 
as a fundamental statistical signal processing technique through 
numerous successful applications including feature extraction, 
signal estimation, detection, speech separation, linear discriminant 
analysis, direction of arrival estimation, and subspace filtering [1-
5]. Oja’s rule [6] ignited an interest among researchers for on-line 
PCA algorithms. This interest led to the well-known methods 
Sanger’s Rule [7], Rubner-Tavan method [8], and APEX [2], 
which is an improved version of Rubner-Tavan’s method. These 
conventional methods, although have found their places in 
applications, have shortcomings in terms of convergence speed and 
estimation accuracy. There are also fixed-point rules for PCA like 
the Power rule and the CNEL rule [9,10], however, these 
procedures also rely heavily on the deflation (or inflation) 
procedure to determine the intermediate eigenvectors, which 
prevents the learning algorithms to converge simultaneously to all 
the principal components. 

Xu’s LMSER algorithm uses subspace techniques and a 
diagonal amplification matrix to extract principal components 
simultaneously [11]. Although LMSER introduces a great 
improvement over the traditional methods in terms of speed and 
accuracy, not constraining the search space for the PCA weight 
matrix to the set of orthonormal matrices, looses valuable 
information while trying to orthonormalize the estimated 
eigenvectors. 

SIPEX-G (Simultaneous Principal Component Extraction 
Using a Gradient Algorithm) algorithm on the other hand, employs 
Givens rotations as an orthonormal parametrization to the PCA 
weight matrix and uses a robust and consistent estimate of the 
output variances based on the input covariance matrix in order to 
converge fast and accurately to the eigenvectors of the underlying 
covariance matrix [12]. In this paper, we perform an extensive 
comparison of the SIPEX-G algorithm with Sanger’s Rule, APEX, 
and Xu’s LMSER in terms of convergence time and eigenvector 
estimation accuracy. We will also demonstrate the superior 

performance of SIPEX-G in direction of arrival and subspace 
Wiener filtering case studies. 
 
2 SIPEX-G ALGORITHM 
 

It is well known that the solution to the PCA problem is an 
orthonormal matrix consisting of unit-norm eigenvectors of the 
input data in its rows. The principal components are defined as the 
directions in the input space along which the data exhibits maximal 
variance with an uncorrelatedness constraint between the output 
components.  

Consider a PCA network  y=Rx, where  and  
are the input and output vectors respectively, and  is 
the weight matrix, which is restricted to the subset D of 
orthonormal matrices. It was shown in [12] that the cost function 
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could be maximized (or minimized) to determine the principal 
components of the input, whose covariance matrix is given by � . 
The scalar gains �

x

o are chosen such that �1>�2>…>�n-1>0. The 
input data  is assumed to be zero-mean.  x
 
Theorem 1: For the constrained network where the weight matrix 
R is an orthonormal matrix, the function J has a stationary point if 
and only if the rows of R consist of all the eigenvectors of �x.  
Proof: In [12] 
 

This theorem practically states that, we can adapt a rotation 
matrix (in batch mode or on a sample-by-sample basis) in order to 
obtain all the principal components of the input data at the output 
of this linear network.  

For practical implementation, SIPEX-G parameterizes the 
orthonormal matrix R using Givens rotations. There exist a unique 
set of Givens angles that characterize each and every orthonormal 
matrix. In n-dimensions, the orthonormal matrix R can be 
decomposed into a cascade of rotation matrices as 
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where Rij, is given by an identity matrix whose four entries at the 
intersection of ith and jth rows with ith and jth columns are modified 
as follows: The (i,i)th and (j,j)th entries are cos�ij, and the (i,j)th and 
(j,i)th entries are -sin�ij and sin�ij, respectively [9].  

Writing the cost function explicitly in terms of the entries of 
the rotation and covariance matrices yields (3), where  is the 

(i,j)
ijR

th entry of the rotation matrix R , which is constructed using the 
Givens angles as shown in (2). 
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 In practice, since the covariance matrix of the input data is not 
known, it has to be estimated, perhaps recursively, from the 
samples acquired up to that point in time. In non-stationary 
environments, a forgetting factor can be incorporated into this 
recursion to account for changing statistics. This approach of 
estimating the output variances from the input covariance matrix 
and the current PCA weight matrix results in a stable, robust, and 
fast algorithm. This algorithm is as follows: 

 
Algorithm:  SIPEX-G 
Step 1. Initialize Givens angles, � = [�pq]. 
Step 2. Use the first N>n samples of the input data to obtain an 
unbiased estimate to the covariance matrix � .  x
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Step 3. If the input data is WSS, use the following recursion to 
update the covariance estimate with every new sample. 
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Step 4. Evaluate the gradient of the cost function with respect to 
the Givens angles from  
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Step 5. Update the Givens angles using gradient ascent. 
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Step 6. Go back to step 3 and continue until convergence. 
 

3 MONTE CARLO ANALYSIS  
 

In this section, we compare the convergence properties of the 
SIPEX-G algorithm with those of Sanger’s rule, APEX, and Xu’s 
LMSER. Especially, we focus on the convergence time (in terms of 
iterations) and number of samples necessary for convergence, and 
the average estimation accuracy of the eigenvector directions after 
convergence. 

To this purpose, 100 Monte Carlo runs using randomly chosen 
3-dimensional Gaussian data with randomly chosen covariance 
matrices are performed. For a given data set, each algorithm is 
started from the same initial condition (identity matrix). The step 
sizes of SIPEX-G, Sanger’s rule and LMSER are set such that the 
first component converges in less than 500 iterations and the 
oscillations are small. For APEX, the sequential approach with the 
proposed optimal adaptive step size is utilized. The gain vectors for 
each output in SIPEX-G and LMSER are both set to [3 2 1].  

Fig. 1 and Fig. 2 summarize the results of these Monte Carlo 
runs. The average eigenvector direction estimation error for a 
single run (10000 iterations) is defined as the average of 3 angles 
between the actual eigenvectors and their corresponding estimates 
also averaged over the last 1000 iterations (samples) for 
smoothness. Notice in Fig. 1 that in almost all cases, SIPEX-G 
achieved an average direction error less than one degree, whereas 
the error levels of the other algorithms were mostly on the order of 
degrees. As for the convergence time, two values are defined: 100-
threshold convergence time and 10-threshold convergence time. 
These are defined as the latest time instants (iteration index) after 
which direction estimation errors for all eigenvectors are below the 
threshold 99% of the time. The histograms for 100- and 10-
convergence times for SIPEX-G and LMSER are given in Fig. 2. 
Notice that SIPEX-G crosses the 100-threshold very fast, almost 
always in less than 200 iterations; whereas, LMSER requires more 
time to achieve this accuracy level. 
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Figure 1. Histograms of average eigenvector direction estimation 
errors for SIPEX-G, Sanger’s rule, LMSER, and APEX. 
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Figure 2. Histograms of 10-degree and 1-degree threshold 
convergence times for SIPEX-G and LMSER. 
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Figure 3. Average direction estimation errors for three eigenvectors 
using SIPEX-G and LMSER. 

 
 Direction 

Error (deg) 
100-Conv. 

Achieved (iter) 
10-Conv. 

Achieved (iter) 
SIPEX-G 0.37 0.35 � 181 474 � 4059 � 3420  
LMSER 2.50 4.08 � 2374 2684 � Sometimes 

SANGER 8.93 7.90 � 8370 2593 � Never 
APEX 30.10 � 14.89 Sometimes Never 

Table 1. Summary of convergence properties of the algorithms in 
terms of their average eigenvector direction estimation errors and 
convergence times 

 
The step size of LMSER could be further increased for speed, 

but this would also increase the magnitude of oscillations from 
sample to sample, thus diminish the consistency of the estimations.  

To summarize these results, we present in Table 1, the 
averages and the standard deviations of these quantities over the 
100 Monte Carlo runs. Notice that SIPEX-G achieves consistently 
a high level of accuracy in estimating the eigenvectors in a very 
short time, which also means data efficiency as well as high 
convergence speed. Since SIPEX-G is the only algorithm that 
achieves 10-convergence sufficiently often, only its convergence 
time is provided in the table. 

For convenience, we also provide in Fig. 3 a sample 
convergence plot for both SIPEX-G and LMSER (the two 
simulations are for different data sets with different covariances, 
therefore should not be compared directly). 



 In this section, the performance of the SIPEX-G algorithm is 
analyzed and compared with those of benchmark PCA algorithms, 
namely, Sanger’s rule, APEX, and Xu’s LMSER. Monte Carlo 
simulations using synthetic data had shown that LMSER is the 
closest competitor of SIPEX-G, yet its performance in terms of 
speed and accuracy is still an order of magnitude lower. SIPEX-G 
owes its superior performance to its robust output variance 
estimation through the input covariance and to its restricted weight 
matrix expressed through Givens rotations. 
 
4 SIPEX-G IN REAL WORLD PROBLEMS 
 
 We have seen in the preceding section that SIPEX-G 
outperforms the competing PCA algorithms in performance. 
Encouraged by these results, in this section, we will employ 
SIPEX-G in two real-world problems where the traditional PCA 
algorithms are commonly utilized, direction of arrival estimation 
and subspace Wiener filtering. 
 
4.1 Subspace Wiener Filtering 
 

In general, subspace Wiener filtering refers to assisting the 
traditional LMS training algorithm with PCA algorithms in order 
to speed up convergence [Haykin,Farhang]. Conventionally, in 
ADALINE training (note that FIR filters are special cases 
corresponding to an input vector formed by a tap-delay-line) PCA 
is first applied to sphere the input vectors to the actual LMS 
algorithm does not suffer from the eigenspread of the input 
vector’s covariance matrix. Alternatively, PCA could be used in 
determine the Wiener solution for the linear adaptive system of the 
form y=wTx where x is the input vector, w is the weight vector, and 
y is the system output for which the desired signal d is assigned. 
Wiener solution for the weight vector is the optimal in terms of the 
mean-square-error (MSE) criterion and it is given by , 
where R

PRw x
1
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x=E[xxT] and P=E[dx]. Consider the eigenvector equation 
for R: Rx=Qx�xQx

T yields Rx
-1= Qx�x

-1QxT, where Qx is the 
orthonormal eigenvector matrix, which can be determined by 
applying an on-line PCA algorithm on the input vector samples and 
�x is the diagonal eigenvalue matrix, which can be determined 
from the output variances of the PCA operation. An estimate of the 
crosscorrelation vector P also can be obtained using the recursive 
formula P(k)= ((k-1)/k)P(k-1)+(1/k)dkxk. Combining these on-line 
estimates of Rx

-1 and P, we can obtain an accurate estimate of the 
Wiener solution for the weights in an on-line fashion without 
having to invert the covariance matrix. 

In order to demonstrate the speed and accuracy of the 
proposed SIPEX-G algorithm, we performed 100 Monte Carlo 
simulations to obtain the Wiener solution of a 3-tap ADALINE 
using 10000 samples of input-desired data using the procedure 
described above. The input covariance matrix, the optimal solution 
and the samples are selected randomly for each run. For 
comparison, SIPEX-G, LMSER and simple LMS are applied to the 
same data sets, all with a learning rate of 10-3. Fig. 4 illustrates a 
typical convergence plot for these three algorithms. The 
normalized distance to the Wiener solution is defined as the ratio of 
the norm of the weight vector error (with respect to the Wiener 
solution that can be obtained from all the samples seen by the 
algorithm so far as the reference) to the norm of the Wiener 
solution for the weight vector. Notice that SIPEX-G converges to 
the Wiener solution fast and accurately compared to LMSER. 
Regular LMS algorithm, on the other side, converges slow but 
steadily towards the solution. LMSER, however, cannot converge 
to the desired solution as accurately as the other two algorithms. 
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Figure 4. Typical convergence plot of SIPEX-G, LMSER and LMS 
to the Wiener solution in an on-line ADALINE training scenario. 
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Figure 5. Pdf estimates of mean (first column) and standard 
deviation (second column) of normalized distance to the Wiener 
solution over 100 Monte Carlo runs. 
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Figure 6. Actual and estimated DOA for a 2-source 3-sensor case 
with 20dB SNR. 
 

Fig. 5 shows the histograms of the mean and the standard 
deviation of normalized distance over the last 200 iterations of 
each Monte Carlo run. Observe that SIPEX-G achieves a small 
error in estimating the Wiener solution with a small variance, 
whereas LMSER canoot perform as well in general. LMS, on the 
other hand can be susceptible to the eigenspread of the input 
covariance matrix, resulting in a wider spread in the pdf of final 
accuracy achieved by this algorithm. Since LMS converges 
smoothly towards the optimal weight vector, its standard deviation 
over the last 200 iterations of each run is very small compared to 
the PCA based algorithms.  
 
4.2 Direction of Arrival Estimation 
 

Subspace-based methods for estimating the direction of arrival 
(DOA) of signals impinging on an array of sensors have been 
researched extensively. State-space method [13], ESPRIT [14], 
MUSIC [15], and Min-Norm [16] are examples to these 
approaches to the DOA problem. These methods all require the 
eigendecomposition of the covariance matrix of the signal, yet the 
alternative SWEDE [17], achieves subspace estimation without 
eigendecomposition. In this section, we will focus on the MUSIC 
algorithm, which basically uses Sanger’s rule for the 



eigendecomposition task. We will replace that with our SIPEX-G 
algorithm. 

The DOA problem is formulated as follows. A linear array of 
n sensors receive a mixture of m source signals plus an additive 
complex Gaussian noise whose variance is smaller than those of 
the signals. 

kkk vsDx ��� )(                (8) 
where  is the nxm steering matrix with � 
denoting the vector of direction angles for the sources [15,17]. The 
random vectors x

)]()...([)( 1 mddD ����

k, sk, and vk are nx1, mx1, and nx1 complex 
Gaussian distributed respectively. Under this formulation, the 
covariance matrix of x, the received signal vector at the sensors, 
can be expressed as 
           (9) IDRDxxER H
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assuming uncorrelated, equal-power noise on each sensor. In order 
to solve for the complex eigenvectors of Rx, we define 
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where Rc is a real matrix twice the size of Rx, and with the 
eigenvectors as shown in (10), in terms of the complex 
eigenvectors of the Rx. Rc can be computed from the samples by 
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When the number of sources is known, the task of DOA estimation 
reduces to finding the n-m minor components of the covariance 
matrix Rx and determining the m minima of the cost function 
 )                 (12) ()()()( ��� dWWdf H
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H
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where  is the matrix formed by the eigenvectors 
corresponding to the minor components. This is called the multiple 
signal classification (MUSIC) algorithm for DOA estimation. 
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 When we apply SIPEX-G in the MUSIC algorithm outlined 
above, for a 2-source-3-sensor case with an SNR of approximately 
20dB, we obtain the result presented in Fig. 6. Notice that, the PCA 
problem that is solved in this problem is 2xn=6 dimensional with 
three eigenvalues each of multiplicity two.  
 
5 CONCLUSIONS 
 

PCA plays a central role in statistical signal processing and in 
the last two decades many on-line algorithms have been proposed 
in the literature to determine the eigenvectors of the input 
covariance matrix. These conventional algorithms, however, do not 
take advantage of the well-known fact that the solution sought 
dwell in the set of orthonormal matrices. Due to this, most of these 
algorithms employ deflation, which nothing more than the Gram-
Schmidt orthogonalization, and Oja’s 1st order approximation to 
vector normalization to accomplish orthonormality. The proposed 
SIPEX-G algorithm, on the other hand, addresses the question of 
whether there is an on-line PCA algorithm that avoids deflation 
and converges to all the desired principal components 
simultaneously. Exploiting the Givens rotations to parameterize the 
weight matrix, SIPEX-G guarantees that the eigenvector estimates 
form an orthonormal set at all times, saving time by avoiding the 
orthonormalization process. Furthermore, it uses a robust estimate 
of the output variances that employs directly the input covariance 
matrix, therefore achieves high accuracy. SIPEX-G, however, is 
still a gradient algorithm, thus its performance is susceptible to 
poor choice of the step size.  

Extensive Monte Carlo simulations performed and presented 
in this paper demonstrated that, nevertheless, SIPEX-G is still 
superior to conventional benchmark gradient-based PCA 

algorithms Sanger’s rule and APEX and even to the LMSER 
algorithm, which also outperforms the traditional PCA approaches. 
We have also demonstrated the high performance of SIPEX-G in 
two real world problems, namely on-line direction of arrival 
estimation using subspace methods and subspace Wiener filtering. 

Future work will be directed towards the development of a 
fixed-point algorithm to further increase the speed and efficiency 
of the algorithm and also to reduce the computational burden. 
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