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ABSTRACT

In the context of blind equalization, a new class of
Bussgang techniques called Constant Norm Algorithm
(CNA), which contains the well-known CMA, is devel-
oped. From this class, two new cost functions designed
for QAM modulation are derived. The first, named
CQA for Constant sQuare Algorithm, is better adapted
for QAM than the CMA. It results in a lower algo-
rithm’s noise without an increase of complexity. The
second, is a weighting between the CMA and the CQA
to get the advantages of both. The weighting coefficient
is dynamically driven and justifies the name of Constant
Dynamic Norm Algorithm (CDNA), which performs the
same convergence speed as the CMA with a lower algo-
rithm’s noise.

1 Introduction

Equalization through filtering (fig. 1), attempts to find
the source data an (supposedly i.i.d.), in the most effi-
cient way according to a certain criterion (like MMSE,
ZF,. . . ), from an observation xn, which is the result
of the convolution of an by a finite impulse response
channel H and disturbed by a white additive Gaussian
noise bn. In the framework of blind equalization, also
called unsupervised or self-learning, the only available
a priori knowledge is the statistics of the data an.

The resolution to this problem can be made by fil-
tering the received data through a filter W . This filter
is optimized in order to minimize a certain cost func-
tion J . This minimization is made, for example, by a
stochastic gradient algorithm (fig. 1). With a view to
simplifying the notations, the time indexes will often be
left out.

The aim, therefore, is to find a cost function J such
as the perfect equalizer Wopt is the global minimum. We
will now limit ourselves to cost functions which verify: Wopt = argmin

W
J (z)

J (z) = E J(z)
(1)
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Figure 1: Blind equalization scheme

where E indicates expectation. From this cost function,
it is possible to develop a stochastic gradient algorithm:

Wn+1 = Wn − µφ(z)Xn,

φ(z) =
∂J(z)

∂z
.

(2)

In section 2.1 we recall the cost function of the CMA.
The following section presents a modification of CMA
called CQA for QAM. Then, in 2.3, we develop a gener-
alized form for these algorithms, called Constant Norm
Algorithm (CNA). Finally, subsection 2.4 deals with
a weighting algorithm between the CMA and the new
CQA. Extensive simulations prove the efficiency of the
two new schemes proposed in this paper.

2 Cost functions

2.1 Constant Modulus Algorithm
The CMAp,q has been developed by Godard [1] for con-
stant modulus modulations (like the PSK). This is one
of the most widely studied algorithms. The cost func-
tion can be written as

J (z) =
1
pq

E
∣∣|z|p −R

∣∣q. (3)

When p = q = 2, the algorithm takes the simple form

Wn+1 = Wn − µ
(
|z|2 −R

)
z Xn; (4)

constant R is chosen so that the inverse of the channel is
a minimum of CMA in a noiseless environment and for
a doubly-infinite length equalizer. This is then found to
be equal to E |a|2p

/E |a|p.
The fact that this cost function, which was conceived

for the PSK modulation, also works for QAM is quite



surprising. However, in this case, the descent algo-
rithm (2) generates a significant amount of noise.

2.2 Constant sQuare Algorithm
By noticing that the QAM type modulations are more
“square” than “round”, we can slightly modify the
CMA, in order to reduce the noise from the algorithm
(fig. 2). If, in place of constraining the equalizer’s out-
put to be on a circle, we actually consider a square, the
residual noise would be lower, since the average distance
between the symbols of the constellation and the square
(`CQA), is shorter than that between the symbols and
the circle (`CMA).

`CMA

`CQA

Figure 2: Principle of CMA and CQA.

This principle was already developed in the multi-
modulus algorithm (MMA) [2]. But it is more a matter
of the decomposition of the CMA on the in-phase and
quadrature components, than the generalization of the
CMA to QAM.

The modulus is a norm on the plane, from which we
can derive the circle. Similarly, a simple norm exists,
from which we can better derive the square correspond-
ing to the “square” side of the QAM: infinite norm,

‖z‖∞ = max
(
|<z| , |=z|

)
, (5)

where <z is the real and =z the imaginary part of z.
We can therefore write the cost function corresponding
to the CQA as

J (z) =
1
pq

E
∣∣‖z‖p

∞ −R
∣∣q. (6)

Of course, the constant R depends on p, q and the
constellation, but it differs from that of the CMA. We
will later show that, for q = 2, R = E ‖a‖2p

∞ /E ‖a‖p
∞.

The CQA therefore attempts to correspond the equal-
izer’s output to a square of “radius” R, and not to a
circle. We also notice that the CMA only works on the
basis of modulus. Yet, for a 16-QAM, there are three
different modulus levels (fig. 2), while there are only two
different infinite norm levels, which explains the smaller
noise in the CQA, in comparison to the CMA.

The pseudo-error function, φ(z), used in the descent
algorithm (2), for the CQA2,2 becomes

φ(z) =
(
‖z‖2

∞ −R
)
‖z‖∞ F (z)

F (z) =

{
sgn(<z) if |<z| > |=z|,
i · sgn(=z) otherwise.

(7)

2.3 Constant Norm Algorithm
The CMA and the CQA belong to an algorithm’s class
that we name the Constant Norm Algorithm (CNA).
Indeed, if n(·) is a norm on R2, then we can write the
CMA and CQA cost functions as a particular case of:

J (z) =
1
pq

E
∣∣np(z)−R

∣∣q. (8)

In order to respect (1), we can derive the constant R as
presented below. Actually, R is fixed in such a way that
the perfect equalizer (in the sense of the ZF criterion)
is a minimum of J in a noiseless environment. The
condition is expressed by the relation:

∂J (αa)
∂α

∣∣∣∣
α=1

= 0. (9)

This means that for a perfect channel followed by a 1-tap
equalizer, its coefficient α should converge to 1. In other
words, the equalizer must at least recover the power of
the signal. Now, since for α ∈ R, we have n(αz) =
|α|n(z), we find:

∂J
∂α

= E
(
np(αa)−R

)q−1 |α|p−1 sgn(α)np(a). (10)

And the necessary, but not sufficient condition becomes:

∂J (αa)
∂α

∣∣∣∣
α=1

= E
(
np(a)−R

)q−1
np(a) = 0. (11)

In the particular case of the CNAp,2,

R =
E n2p(a)
E np(a)

; (12)

where we recognize the CMAp,2 and CQAp,2 constants.

2.4 Constant Dynamic Norm Algorithm
Contrary to the CMA, the phase recovery by the CQA
seems to be a drawback, which makes it sensitive to a
carrier residue. However, thanks to the CNA, it appears
to be possible to keep the advantage of the CMA during
the transient phase, and that of the CQA to achieve a
better steady state. Actually, if the cost function be-
longs to the CNA class and if the involved norm is a
weighted norm between the CMA and the CQA, we can
define a new algorithm called CDNA, which offers the
advantages of both the CMA and CQA. The norm used
is therefore given by:

‖z‖λ = αλ ‖z‖∞ + (1− λ) |z| . (13)

This norm depends on the weighting parameter λ. If
λ = 0, the norm is equivalent to the modulus, and if
λ = 1, the norm is equivalent to the infinite norm.

The coefficient α > 0 is used in order to have an ad-
ditional degree of freedom. It should also be noted that



parameter λ, included in the norm, is also allowed to be
adaptively modified by a stochastic gradient algorithm.
In fact, we could write the function J as:

J (z) =
1
pq

E
∣∣‖z‖p

λ −R(λ)
∣∣q. (14)

For p = q = 2, we therefore find the following updat-
ing algorithm,

Wn+1 = Wn − µW

(
‖z‖2

λ −R(λ)
)
‖z‖λ

(αλF (z) + (1− λn) csgn(z))Xn,

λn+1 = λn − µλ

2

(
‖z‖2

λn
−R(λn)

)(
2 ‖z‖λn

(α ‖z‖∞ − |z|)−R′(λn)
)
,

(15)

where R(λ) is the rational function given by (12)
and R′(λ), its derivative.

3 Simulations

3.1 Comparison CMA/CQA
We have simulated the CMA and the CQA on the 16-
QAM with an SNR set to 20 dB, and with channels taken
from Proakis [3], Lee [4] and Altekar and Beaulieu [5].
The equalizers are transversal filters of 31 taps, initial-
ized to have a single, center spike. For each channel,
we carried out the simulations to have almost the same
convergence speed. The comparison involves an average
over 100 runs of ISI measurement defined in (16) (with
c the global impulse response of the system), which is
not sensitive to the phase recovery.

ISI =
∑

|ci|2 −max |ci|2

max |ci|2
. (16)
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Figure 3: Proakis 1 channel.

As can be seen from fig. 3 and 4, for the first two
channels, the CQA out performs the CMA in terms of
ISI at steady state, for almost the same convergence
rate, which proves the efficiency of the CQA against the
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Figure 4: Lee channel.

excess MSE. The improvement is bigger for the Lee
channel; this could be explained by the intrinsic phase-
recovery of the CQA.

3.2 Comparison CMA/CQA/CDNA
The comparison of the CDNA with the CMA and CQA
was done by setting the CDNA’s parameters as follows:
λ is initialized to 0 (so the CDNA starts off like a CMA);
the coefficient α is set to 1.18; and the step size µλ is
fixed at 2·10−2. Contrary to the other simulations, this
simulation was performed on the Altekar and Beaulieu
channel (fig. 5) in order to compare the speed of con-
vergence. Therefore, the step size of the algorithms was
chosen to have the same steady state performance. We
observe there that the CQA converges faster than the
CMA. The CDNA is also as good as the CQA because
it tends to choose the best algorithm between the CMA
and CQA, as expected.
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Figure 5: Altekar and Beaulieu channel.

Moreover, in order to check that the parameter λ is
dynamic enough with regards to the output variation,



we have added noise between the samples 10000 and
12000. In this range, the SNR goes from 20 dB to 9.6 dB.
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Figure 6: Proakis 1 channel.

We notice in fig. 6 that the CDNA starts like the
CMA, then converges faster and finally reaches a per-
formance equivalent to the CQA. The CDNA’s steady
state behavior is slightly higher than that of the CQA
because of the contribution of the CMA part of the algo-
rithm. Therefore, the CDNA follows well to the original
intuitive idea. Furthermore, parameter λ that guides
the CDNA dynamically reacts to the equalizer output.
We notice that when the noise increases, it has a ten-
dency to return to the CMA mode. The CDNA is overall
the best performing algorithm, in the sense that it con-
verges faster than the CMA. It is also worth noting that
the CQA appears much less disturbed by jumps in the
noise level than the CMA.

Another set of simulations analyzes the behavior of
the different algorithms on a channel that changes the
phase of the constellation. For this, we use the same
parameters as before applied on the Lee channel (fig. 7).
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Figure 7: Lee channel.

We can see that since it is necessary to recover the
phase, the CDNA doesn’t immediately converge to the
CQA. Once the phase is sufficiently recovered, the con-
vergence takes place.

4 Conclusion

In this article, we have presented two new algorithms
(CQA and CDNA) belonging to the same general class
(CNA) as the CMA.

Simulation results clearly show that CQA generates
much less algorithm noise than CMA. It is also possible
to show this result analytically, by analyzing the residual
MSE. The fact that the MSE excess is small allows us to
increase the step size, and thus the speed of convergence.

The same holds for the CDNA, allowing us to con-
tinue the positive aspects of CMA (i.e., its insensitivity
to carrier residue) and CQA. This algorithm is a weight-
ing of the other two, but remains in the CNA class. The
interesting point in this weighting is that it can be dy-
namically carried out.

Results on CDNA and CQA suggest that for all the
modulation schemes, there exists an optimized norm,
which result in a better steady state performance like
the CQA for the QAM, and the CMA for the PSK.

The analogy between the CMA and CQA is so strong
that we could extend the CMA’s derivations as the Mul-
tiple Modulus of [6] to the CQA.
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