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ABSTRACT

In this paper, we propose a novel linearization technique
for stereophonic reproduction systems with nonlinearity
by using the MINT and Volterra filters. In the proposed
technique, the linearization is achieved by incorporat-
ing Volterra filters into the MINT, which can realize
exact linear inverse filtering. The linearization perfor-
mance of the proposed technique is consequently very
high. The proposed technique can simultaneously lin-
earize two loudspeaker systems in the stereophonic re-
production systems, also. On the other hand, the con-
ventional linearization technique for monaural reproduc-
tion systems cannot realize exact linear inverse filtering.
The linearization performance consequently deteriorates
remarkably. Simulation results demonstrate that the
proposed technique has about 20dB higher performance
than the conventional one. The proposed technique also
has smaller computational complexity than the conven-
tional one.

1 INTRODUCTION

Recently, digitization of audio systems has been pro-
gressing. The digitization has reduced some distortions
occurring in the transmission paths significantly. Conse-
quently, the sound quality has been improved consider-
ably. However, loudspeaker systems, which are a human
interface in the digital audio systems, have a lot of dis-
tortions, especially, nonlinear distortions. The perfor-
mance of the whole digital audio systems consequently
deteriorates. Hence, the compensation of the nonlin-
ear distortions (linearization of loudspeakers) is a very
important issue in the digital audio systems.

The linearization can be achieved by using a Volterra
filter [1, 2], which identifies the nonlinearity of a target
loudspeaker system, and a linear inverse filter, which
compensates the linear distortion [3, 4, 5]. One of some
factors influencing the linearization performance is the
estimation accuracy of the Volterra filter. However, this
estimation accuracy can be made high by using an iden-
tification method employing multi-sinusoidal waves [5].
Another factor is the design accuracy of the linear in-
verse filter to compensate linear distortions. In other

words, whether exact linear inverse filtering can be real-
ized influences the linearization performance. However,
the exact linear inverse filtering cannot be realized be-
cause loudspeaker systems have nonminimum phases.
In this case, only an approximate inverse filtering is
realized. If the approximate accuracy is low, the lin-
earization performance deteriorates remarkably. More-
over, when used for two loudspeaker systems in stereo-
phonic reproduction systems, the conventional lineariza-
tion technique is separately introduced into those two
loudspeaker systems. We therefore propose a novel lin-
earization technique for stereophonic reproduction sys-
tems. In the proposed technique, we use the MINT [6],
which can realize an exact linear inverse of a target
acoustic system. The linearization performance is con-
sequently very high. Moreover, the proposed technique
can simultaneously linearize two loudspeaker systems in
the stereophonic reproduction systems.

2 Conventional Linearization Technique and Its
Problem

Figure 1 shows a block diagram in case of in-
troducing the conventional linearization technique
into stereophonic reproduction systems. In Fig. 1,
D1L(z),D1R(z),D2R(z1, z2), and D2R(z1, z2) represent
the transfer functions of the first- and second-order
Volterra kernels of the left and right loudspeaker sys-
tems, respectively. D̂2L(z1, z2) and D̂2L(z1, z2) are
Volterra filters to model the second-order Volterra
kernels of the loudspeaker systems, and D−1

1L (z) and
D−1

1R(z), which are linear inverse filters of D1L(z) and
D1R(z), are designed so as to satisfy the following con-
dition, respectively.

D1i(z)D−1
1i (z) = z−∆ , i is L or R (1)

The second-order nonlinear transfer function of the
whole system is consequently represented by the follow-
ing equation.

D2i(z1, z2)z−∆ − D1i(z)D−1
1,i (z)D̂2i(z1, z2)

= D2i(z1, z2)z−∆ − z−∆D̂2i(z1, z2)
= {D2i(z1, z2) − D̂2i(z1, z2)}z−∆ (2)
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Figure 1: Block diagram of the conventional lineariza-
tion system.

If D̂2i(z1, z2) is equal to D2i(z1, z2) of the loudspeaker
system and D−1

1i (z) is designed so as to satisfy the con-
dition shown in (1), the linearization systems can com-
pletely compensate the second-order nonlinear distor-
tions on the two loudspeaker systems. The high accu-
racy D̂2i(z1, z2) can be obtained if narrow band signals
are used to model D2i(z1, z2). On the contrary, D−1

1i (z)
to satisfy the condition of (1) can exist if and only
if D1i(z) is a minimum phase function. However, the
acoustical transfer function D1i(z) is generally consid-
ered to be a nonminimum phase function. Hence, only
approximate inverse filters are obtained. It is therefore
very difficult to compensate (cancel) D2i(z1, z2) com-
pletely because D−1

1i (z) does not satisfy (1). Accord-
ingly, the performance of linearization systems is greatly
influenced by whether exact linear inverse filtering can
be realized.

3 Linearization Technique Using the MINT

3.1 MINT [6]

In this section, we explain the MINT(Multiple-
input/output INverse-filtering Theorem), which can re-
alize an exact linear inverse of a target acoustic system.
Consider the acoustic system shown in Fig. 2. In Fig. 2,
the transfer function D1L(z) from loudspeaker SL to re-
ceiving point C is defined by

D1L(z) = z−ud1L(z) (3)

where z−u is the time delay between SL and C, d1L(z)
the M ′th order polynomial of z−1, which represents re-
flection sound effects. The transfer function D1R(z)
from loudspeaker SR to receiving point C is also defined

SL
C 

Room Acoustic

H1L(z)
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SR

D1L(z)
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Figure 2: Sound field inverse filtering using the MINT.

by
D1R(z) = z−(u+w)d1R(z) (4)

where z−(u+w) is the time delay between SR and C,
d1R(z) the N ′th order polynomial of z−1. To realize
inverse filtering of the system, H1L(z) and H1R(z) must
satisfy the expression

1 = d1L(z)H1L(z) + z−wd1R(z)H1R(z) (5)

This relationship is called Diophantine equation. The
solutions for this equation exist if and only if d1L(z) and
z−wd1R(z) are relatively prime (in other words, do not
have any common zero in the z-plane). The solutions is
expressed by

H1L(z) = H1L,min(z) + z−wd1R(z)Q(z)
H1R(z) = H1R,min(z) − d1L(z)Q(z)

where Q(z) is an arbitrary polynomial. H1L,min(z) and
H1R,min(z) are the only pair of the minimum order solu-
tion that satisfies (5) and the orders have the following
relation.

deg H1L,min(z) < deg z−wd1R(z) = N + w

deg H1R,min(z) < deg d1L(z) = M

The property of the Diophantine equation is not con-
cerned with whether d1L(z) and z−wd1R(z) are nonmin-
imum phase functions. If some symmetrical positions of
loudspeakers and a microphone are avoided, d1L(z) and
z−wd1R(z) does not have a common zero. Hence, exact
inverse filtering is realized.

Next, we describe the computation of H1L,min(z) and
H1R,min(z). Figure 3 shows a system arrangement to
obtain H1L,min(z) and H1R,min(z) by using adaptive fil-
ters. First, the transfer functions of D1L(z) and D1R(z)
are modeled beforehand. Next, as shown in Fig. 3, two
adaptive filters Ĥ1L,n(z), Ĥ1R,n(z) are connected to the
outputs of the modeled transfer functions. Finally, the
coefficients of the two adaptive filters are updated as
minimizing the following error signal.

e(n) = x(n−∆)−{Ĥ1L,n(z)D1L(z)+ Ĥ1R,n(z)D1R(z)}
(6)
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Figure 4: Block diagram of the proposed linearization
system using the MINT.

With the above procedure, you can obtain the filters to
realize exact linear inverse filtering.

3.2 Linearization Technique for Stereophonic
Reproduction Systems

In this section, we introduce a system arrangement to
apply the MINT to the linearization system for stereo-
phonic reproduction systems.

Figure 4 shows the block diagram of the proposed
system. In Fig. 4, H1L(z) and H1R(z) are FIR filters
in the MINT as explained in the previous section. The
relation of these filters is shown in the following equation
again.

D1L(z)H1L(z) + D1R(z)H1R(z) = z−∆ (7)

Hence, the second-order nonlinear property of the whole

Table 1: Simulation conditions in the proposed and the
conventional systems.

Sampling frequency 44100[Hz]
Tap length of D1L(z) 128
Tap length of D1R(z) 128
Tap length of H1L(z) 127
Tap length of H1R(z) 127
Tap length of D−1

1L (z) 512
Tap length of D−1

1R(z) 512
Tap length of 2nd-order models 128
Delay of the proposed system 64

Delay of the conventional system 256

system in Fig. 4 is represented by

{D2L(z1, z2) + D2R(z1, z2)}z−∆

−{D1L(z)H1L(z) + D1R(z)H1R(z)}
·{D̂2L(z1, z2) + D̂2R(z1, z2)}

= z−∆{D2L(z1, z2) + D2R(z1, z2)
−D̂2L(z1, z2) − D̂2R(z1, z2)} (8)

If

D2L(z1, z2) = D̂2L(z1, z2),D2R(z1, z2) = D̂2R(z1, z2),
(9)

that is, the second-order Volterra kernels of two loud-
speakers are identified accurately, the nonlinear distor-
tion can be compensated completely.

4 Simulation Results

To verify the applicability of the proposed technique,
some simulations were conducted. In the simulations,
we employed the characteristics of actual loudspeak-
ers, which were measured by the identification method
in Ref. [5]. In the simulation, sinusoids with different
frequency (f1orf2) are input to two loudspeakers sep-
arately, then the two output spectra before and after
compensation are compared. Table 1 shows the simula-
tion conditions. Figures 5∼7 show the output spectra
before compensation, after compensation by the conven-
tional technique, and after compensation by the pro-
posed technique, respectively. In these figures, 0[dB]
means the maximum linear output level.

It can be seen from these figures that the proposed
technique can considerably reduce the second-order non-
linear distortions compared with the conventional one.
This is due to the difference in the design accuracy of
inverse filters. On the other hand, the proposed method
generates larger 3rd and 4th nonlinear distortions than
the conventional one. However, the level is fully low
and the effect to output signals can be consequently ne-
glected in actual environments.

Compare the computational complexity and system
delay of the conventional and the proposed linearization
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Figure 5: Output spectrum before compensating the
2nd-order nonlinear distortion (f1 = 538.33[Hz], f2 =
1345.83[Hz]).
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Figure 6: Output spectrum after compensating the 2nd-
order nonlinear distortion by using the conventional
method (f1 = 538.33[Hz], f2 = 1345.83[Hz]).

systems. From table 1, the proposed system has 1/4
computational complexity and system delay of the con-
ventional one. Hence, the proposed technique can be
easily implemented.

5 Conclusions

In this paper, we have proposed a novel linearization
system for stereophonic reproduction systems. Since ex-
act inverse filtering can be realized by using the MINT,
the proposed technique has higher linearization ability
than the conventional one. Moreover, the whole com-
putational complexity of the proposed technique is 1/4
as large as that of the conventional one and the system
delay is also small.
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Figure 7: Output spectrum after compensating the 2nd-
order nonlinear distortion by using the proposed method
(f1 = 538.33[Hz], f2 = 1345.83[Hz]).
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