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  Abstract: To circumvent the problem of performance
degradation of direction of arrival (DOA) estimation due to
angular spread, it was assumed impracticably that the
parameterized shape of the angular distribution is known.
Moreover, the disadvantage of most algorithms is the
computational complexity as a multi-dimensional
numerical search is necessary. By using a simple 1-D
maximum eigenvalue search rather than resort to
multidimensional parametric search, we propose a blind
algorithm for DOA estimation of multiple coherently
distributed sources, without prior knowledge about the
function form of the angular distribution. We develop the
algorithm in uniform linear array (ULA) condition,
although our approach is not limited to ULA.
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1  INTRODUCTION

  Most sensor array processing methods are based on the
assumption that the signals are propagated from distinct
point sources. However, it is just an approximation of the
practical environment. Under many circumstances, the
application of conventional high-resolution algorithms to
estimate the direction of arrival (DOA) of the sources will
have erroneous results [1-2].
  Recently, previously posed 1-dinensional DOA
estimation problems for point source are generalized to a
multi-dimensional parameter estimation problem. Four
types of distributed sources have been appeared in the
literature, including coherently distributed (CD) source,
incoherently (ICD) distributed sources, generalized array
manifold (GAM) source and partially coherent (PCD)
source [3-6]. In this paper, we consider the problem of
DOA estimation of multiple CD sources.
  Most previous methods are based on the knowledge of
all possible generalized directional vectors that are
depending on the function form of the angular distribution
of the sources [4-7]. The unknown parameters of the
angular distribution include the mean DOA and the angular
spread parameter. In this paper, we introduce modulus
constraint on generalized directional vectors determined by
the extent parameters of the distributed sources. Then,
without prior knowledge about the concrete function form
of the angular signal density, a new high-resolution
algorithm is developed for the mean DOA estimation of

multiple CD sources. It is applicable for the situations
where the distributed sources with different form of
distribution coexist, in which case the methods proposed in
[6,7] have difficulty in estimating the mean DOA of the
distributed sources.

2  SIGNAL MODEL

  Consider a linear array of N equally spaced sensors with
spacing d monitoring a wave field of q spatially distributed
narrow-band sources in additive background noise. For
simplicity the sensors and sources are assumed on the
same plane although extension to three dimensional space
is straightforward. The complex envelope representation of
the output of the sensor k can be given by
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Nk ,...,2,1= , where )(θka  is the k-th element of the

directional vector
TdMjdj eea ]...1[)( sin)/)(1(2sin)/(2 θλπθλπθ −−−=

);( iis ϕθ  is the angular signal density of the i-th source in
the direction  θ iϕ  is the unknown parameter vector

and kn  is additive noise.
Assume that the signal components arriving from

different angle within the extension are coherent, the
angular signal density can be represented as
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qi ,...,2,1= , where iγ  is a random variable and
);( iig ϕθ  is a complex-valued deterministic function of θ ,

which is called the deterministic angular signal density and
is unimodal and symmetric about the mean DOA 

iθ [6].

The output vector of the array can be expressed as
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which is called generalized directional vector (GDV).
We will only consider spatially white noise and assume

that signal and noise are uncorrelated from each other, iγ

are zero mean complex random variables, iγ and kγ  are
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not fully correlated for all ki ≠ . The correlation matrix
of the array is then given by IBPBxxR n

HHE σ+== )( ,
where )](),...,(),([ 21 iqii ϕϕϕ bbbB = , P  is a correlation

matrix with the ik-th component defined as )( *
jiE γγ , 

nσ

is the noise variance, I  is unit matrix. The singular value
decomposition of R  is
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where )...,,( 21 qs diag σσσ=Λ , )...,,( nnnn diag σσσ=Λ ,

nq σσσσ >≥≥≥ ...21 , sU and nU  are matrix of the

column vectors which are singular vectors corresponding
to singular values qσσσ ...,, 21 and nσ , respectively.

If the function form of deterministic angular signal
density );( iig ϕθ  were known, the DOA’s and angular
spread parameters can be found from the following
orthogonality property:

)()(0)( BbbU coliff iiii
H

n ∈= ϕϕ (6)
As a simple example, a CD source can be characterized by
two parameters, mean DOA 

iθ  and distribution

parameter iρ . Two-dimensional parametric searching must
be required to estimate these parameters.

Under the situations where the function form of the
deterministic angular signal density is unknown, we are
just interested in the mean DOA and regard extent
parameters as redundancy that need not be estimated. Thus,
multidimensional parametric search is not necessary. Since
the parameterized directional vector )( ii ϕb  is unknown,
we propose a blind identification method to estimate the
mean DOA of the CD sources.

The GDV )( ii ϕb  can be expressed as
)()( iii diag θahb =                (7)

qi ,...,2,1= , where vector ih  is given by
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and is only dependent on the extent parameters. Note that
all the angular distributed function appeared in the
literatures are conjugated symmetric about the mean DOA,
namely, ),(),( *

iiiiii gg ϕθθϕθθ −=− . It is easy to verify

that ih  is a real vector from (8). Below, the new approach
to DOA estimation of CD sources is base on this modulus
constraint on the GDV )( ii ϕb .

3  MAXIMUM EIGENVALUE SEARCHING

METHOD

  From (6), we can write H
snss

H UUBPB )( ΛΛ −= . So that
matrix B can be expressed as:

WUB s= (9)
where qq ×  matrix W is nonsingular. Substituting for B

in (9) with (7), we have
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where )()...,2(),1( Mhhh iii  are the components of vector

ih , H
M

HH uuu ,...,, 21  are the row vectors of matrix sU , iw  is
the i-th column of matrix W qi ......,2,1= . Square the

components on both sides of (10), we obtain:
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Since the components of vector ih  are real or imaginary,
(11) can be written as
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where the sign is positive for the conjugate symmetry case,
and negative for the anti-conjugate symmetry case. By left
multiplying by H

sU , we get
*)( iii wVw θ=                (13)

where )( iθV  is a qq ×  symmetric matrix, and is given by
*)()( si

H
si UUV θθ Φ=     (14)

where 2))((()( ii diag θθ a=Φ .
Equation (13) is not in a convenient form for computation

as the right side is dependent on *

iw . However, it indicates
the condition that the stationary point must satisfy and also
suggests the iterative procedure for compute iw  as

)()()1( * kk wVw θ=+        (15)
where subscription is omitted as )(θV  is dependent on

unknown DOA iθ . We can get iterative solutions through
1-D DOA search. It is suffered from the problem
associated with iterative algorithm like local convergence
or proper initialization. Since the iterative process (15) is
determined with matrix )(θV  in nature, we can obtain
DOA estimation without iterative computation. From (13),
we have

iii wGw )(θ=    (16)

where )( iθG  is a matrix of qq ×  given by
)()()( i

H
ii θθθ VVG =             (17)

Note that iw  is the eigenvector of )( iθG  at the mean
DOA of distributed sources, with the corresponding
eigenvalue equals one.
  Claim: The eigenvalues of matrix )(θG  defined by (17)
and (14) are non-negative, and not larger than 1.
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  Proof: From (17), we can see that )(θG  is positive
definite Hermitian matrix. So the eigenvalues of )(θG  are
non-negative. Denote )(θλ  the maximum eigencalue of

matrix )(θG , then ===
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This property can be applied to obtain DOA estimation

without iterative computation. Computing the maximum
eigenvalue, denoted as )(θλ , of )(θG  at every possible
DOA, the mean DOA of the distributed sources can be
estimated by peak value searching of )(θλ . The DOA
algorithm for the coherently distributed sources is
summarized in the following.
1. Given the sample correlation matrix, find the signal

subspace vectors, which are the columns of matrix sU .
2. Using the estimated signal subspace vectors, calculate

matrix *)()( s
H

s UUV θθ Φ= and )()()( * θθθ VVG = , where

θ  is DOA searching point in ]2/,2/[ ππ− .
3. Compute )(θλ , which is the maximum eigenvalue of

)(θG , and calculate the generalized spectrum

))(1log()( θλθ −−=f (18)

4. Estimate the mean DOA of the distributed sources by
peak value searching of )(θf .

  This algorithm requires a SVD of a complex matrix of
size NN ×  in step 1 and M  SVD’s of a complex matrix of
size qq ×  in step 3, where N  is the sensor number of the
array, M is the number of the DOA searching grids, q  is
the number of the distributed sources. Due to the term

θλπ sin)/(2 dje −  in )(θΦ  and regardlessness of the distributed
parameters, there probably exists ambiguity of the DOA
estimation even if the array manifold )(θa  is unambiguous.
Taking no account of this ambiguity, the algorithm is
applicable for non-uniform array, as no limitation on the
geometry of the array is assumed here. Unlike the methods
proposed in [6,7], which are based on the knowledge of
functional form of the angular signal density, the new
method can deal with the complex situations where the
sources with different angular signal density coexist.

4  SIMULATION RESULTS

  In this section, we will test the validity of the algorithm
by three computer simulation examples. Here, the CD
sources are corrupted by complex white Gaussian noise
with zero mean and variance nσ . The SNR used in the

examples is defined as 10log(1/σn
2). Taking no account of

ambiguity, we only consider a linear array of N equally
spaced sensors with spacing 2/λ=d  and the mean
DOA‘s of the distributed sources locate in ]30,30[ oo− . The
DOA searching step spacing is o1.0 .

Example 1: The angular signal density of two distributed

sources is 
)(1

1
),(

ij
i

ii e
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θθρ
ϕθ

−−−
= i=1, 2, where unknowns are

]6.0,0.3[],[ 111
o−== ρθϕ  and ]9.0,0.4[],[ 222

o−== ρθϕ . In
this example, we assume N=8, SNR=15dB,the number of
snapshot is 100. The MUSIC spectrum is shown in fig. 1(a):
only one peak is obtained. The generalized spectrum (18) is
shown in fig. 1(b): two peaks around the mean DOA of the
distributed sources are obtained.

 (a)

(b)
Fig. 1Dash line: (a) MUSIC spectrum and (b) generalized spatial
spectrum (18) in Example 1. Solid line: true DOA location.

Example 2: The angular signal density of three
distributed sources is ii

iiiig ρθθ
ρθθ

ϕθ ≤−
>−

= ,1

,0
{),( i=1,2,3, where

unknown parameters are ]6,14[],[ 111
oo−== ρθϕ  and

]8,9[],[ 222
oo−== ρθϕ , ]10,2[],[ 333

oo−== ρθϕ . In this
example, we assume N=16, SNR=10dB,the number of
snapshot is 100. The MUSIC spectrum is shown in fig. 2(a):
erroneous results are obtained. The generalized spectrum
(18) is shown in fig. 2(b): three peaks around the mean
DOA of the distributed sources are obtained.

Compared with that in [6,7], which assumed that the
angular signal density );( iig ϕθ  is known with unknown
parameters and 2-D parametric searching was required, our
method does not used this prior information and simple 1-
D DOA searching is required. Moreover, our method is
applicable for the situations where the sources with
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different form of distribution coexist, in which case the
methods proposed in [6,7] have difficulty in estimating the
mean DOA of the distributed sources.

(a)

(b)
Fig. 2Dash line: (a) MUSIC spectrum and (b) generalized spatial
spectrum (18) in Example 2. Solid line: true DOA location.

Example 3: The angular signal density of two distributed
sources is different, one is 11

11

,1

,011 {),( ρθθ
ρθθ

ϕθ ≤−
>−

=
i

g , another is
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2

22 21
1
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θθρ

ϕθ
−−−

=
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g , where unknown parameters

]0.6,0.16[],[ 111
oo== ρθϕ  and ]8.0,0.9[],[ 222

o== ρθϕ . In
this example, we assume N=8, SNR=15dB,the number of
snapshot is 100. The MUSIC spectrum is shown in fig. 3(a):
only one peak is obtained. The generalized spectrum (18) is
shown in fig. 3(b): two peaks around the mean DOA of the
distributed sources are obtained.

5 SUMMARY

Through simple 1-D maximum eigenvalue searching, a
blind identification algorithm is proposed to estimate the
mean DOA of the coherently distributed sources. The
angular signal density is assumed conjugated symmetric
about the mean DOA. It is different with the previous
methods, which are based on the knowledge of function
form of the angular signal density and require
multidimensional parametric searching. Moreover, The
method is applicable for the situations where the distributed
sources with different form of distributed function coexist.
We develop the algorithm in the uniform linear array
condition, although our approach is not limited to ULA.

(a)

(b)
Fig. 3Dash line: (a) MUSIC spectrum and (b) generalized spatial
spectrum (18) in Example 3. Solid line: true DOA location.
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