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Abstract

Adaptive coded modulation (ACM) is a spectrally
e�cient wireless transmission scheme when the
transmitter has perfect channel knowledge. We an-
alyze how the performance of ACM schemes dete-
riorate when only partial channel state information
(CSI) is available due to imperfect channel predic-
tion. The results hold for Rayleigh fading, constant
transmit power, perfect coherent detection in the
receiver, an arbitrary number of independent re-
ceive antenna branches, maximum ratio combining
(MRC), and any linear fading predictor based on
periodically transmitted pilot symbols.

1 INTRODUCTION

Narrowband radio channels are often modelled by
�at-fading models [1]. In [2], the channel capacity
of a �at-fading channel with arbitrary fading distri-
bution was derived for perfect CSI at the transmit-
ter and receiver. The relevant CSI is the channel-

signal-to-noise-ratio (CSNR), 
 = Pr=Pn where Pr
is received signal power and Pn is noise power. The
capacity can be approached using rate adaptation;
letting the number of information bits per channel
symbol be instantly and continuously updated ac-
cording to the CSNR. The rate is high when CSNR
is high, decreasing smoothly as CSNR decreases and
going to zero below a threshold.
The optimal scheme may be approximated using

discrete rate updating [3]. The transmitter switches
between signal constellations and channel codes of
varying size/rate at discrete time instants, such that
the instantaneous rate is the highest possible which
meets the given BER requirements for the available
CSI�thus simultaneously ensuring maximum aver-

age spectral e�ciency (ASE) and acceptable BER.
We study the baseband system shown in Fig-

ure 1. Each fading channel corresponds to a wireless
link between the transmitter and one out of H re-
ceive antenna elements. The adaptive coded modu-

lator/demodulator contains N transmitter-receiver
pairs, indexed by n = 1; : : : ; N . Transmitter n
has a rate of Rn information bits per symbol, such
that R1 < R2 < : : : < RN . Transmitter-receiver
pair n is used when 
 2 [
n; 
n+1i. For each n,

n is computed as the lowest CSNR necessary for
transmitter-receiver pair n to operate at a BER be-
low some speci�ed target BER0, at transmit power
P . Also, we let 
0 = 0 and 
N+1 = 1, so for all
n 2 f0; : : : ; Ng, 
n+1 > 
n. We assume that no
available transmitter-receiver pair satis�es the BER
requirement in [0; 
1i, so no information is trans-
mitted when 
 falls here.

When performing rate adaptation, the transmit-
ter must rely on the accuracy of the CSNR as pre-

dicted by the receiver at discrete time k. The true

channel quality at the transmitter update time k+� ,
where � is the discrete return channel delay (corre-
sponding to �Ts seconds where Ts [s] is the channel
symbol duration), may deviate from the prediction;
hence the transmitter may adapt to the wrong chan-
nel quality.

Denoting the transmitted complex baseband sig-
nal after pilot symbol insertion at time index k by
x(k), the received signal on the hth subchannel can
be written yh(k) = zh(k)�x(k)+nh(k). Here zh(k) is
the complex fading amplitude, and nh(k) is complex-
valued additive white gaussian noise (AWGN) with
statistically independent real and imaginary com-
ponents. x(k) is the information signal, except for
time instants k = mL (m any integer, L a constant
integer), when deterministic pilot symbols are peri-
odically transmitted. We assume that the pilot sym-
bols all have the same (absolute) value, x(mL) = a.

Assuming �at Rayleigh fading on each subchan-
nel, zh(k) is complex-valued gaussian with zero
mean, and will be assumed approximately constant
between two successive pilot symbols (block fading).
Its variance is 
 = E[jzhj2], independent of h, with

 assumed time-invariant; i.e., we assume a wide-
sense stationary (WSS) channel.

If a constant average transmit power P [W] is
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Figure 1: ACM system with pilot-aided channel estimation (for detection) and prediction (for adaptation).

used, and the one-sided power spectral density of
the complex AWGN is N0 [W/Hz] in every subchan-
nel, the received CSNR on subchannel h at a given
time k is 
h(k) = jzh(k)j2 � P=(N0B), where B [Hz]
is the one-sided information bandwidth. The ex-
pected CSNR is E[
h] = 
h = 
P=(N0B). With
H statistically independent antenna branches com-
bined by MRC at the receiver, the overall received
CSNR at time k is 
(k) =

PH

h=1 
h(k), which is
Gamma distributed [4] with expectation 
 = H
h.
This CSNR is predicted and sent back to the trans-
mitter for each received pilot symbol. The delay
between CSNR prediction and the subsequent al-
lowed transmitter update is an integer number of
pilot symbol periods, � = jL. The return channel
transmitting the code index n is assumed noiseless.
For the receiver signal detection, the signal may

be bu�ered before channel estimation, and an op-
timal noncausal Wiener interpolator �lter may be
assumed used [5]. This will smooth the noise and
allow for true coherent detection. Hence, we still as-
sume that the CSI used during detection is perfect.

2 CHANNEL PREDICTION

For any pilot symbol time instant k� lL (l positive
integer), de�ne

~zh(k � lL) = zh(k � lL) +
nh(k � lL)

a
(1)

which is the maximum-likelihood (ML) estimate of
zh(k � lL) based on one received observation [5].
The two terms are statistically independent complex
gaussians, so their sum is a complex gaussian with
variance equal to the sum of their variances. At
time k+ jL of transmitter update we have available

~zh(k); ~zh(k � L); ~zh(k � 2L); : : : ; ~zh(k � (K � 1)L)
from which to predict zh(k + jL). Here, K � 1 is
the chosen predictor order. For gaussian processes,
the optimal predictor in the maximum a posteriori

(MAP) sense is a linear function of the observations
[5]. Any linear predictor of order K can be written

bzh(k + jL) = f
T
j ~zh (2)

where fj = [fj(0); : : : ; fj(K � 1)]T is the predictor
�lter coe�cient vector delay jL (we do not need
a subchannel index h, since the optimal �lter will
depend only on the feedback delay when all sub-
channels have the same fading properties), and

~zh = [~zh(k); ~zh(k � L); : : : ; ~zh(k � (K � 1)L)]T :

The predicted fading envelope is a linear combi-
nation of gaussians, so it is itself also a complex
gaussian. Now, de�ne b�h = jbzhj, with associated

E[b�2h] = b
. Then, there exists a constant r such

that b
 = r � 
. It follows that b�h is Rayleigh
distributed, and that the corresponding predicted
overall CSNR b
 =

PH

h=1 b�2hP=(N0B) is Gamma
distributed�with expected value E[b
] = r
. In [6]
expressions are derived for r which apply directly
also to the case of linear prediction. Let

[R]kl =
Cov(zh(kL); zh(lL))



; (3)

element (k; l) in the normalized covariance matrix

R (dimension K �K) of the fading�at pilot time
instants�on the subchannel in question. Due to the
WSS assumption this will only be a function of the
lag between the two pilot symbol time instants kL
and lL, [R]kl = R(�kl), with �kl = jk � ljLTs. For



a =
p
P , we obtain [6]

r = f
T
j Rfj +

jfj j2

h

: (4)

Finally, assuming the much-used Jakes spectrum [1]
for the fading process, the MAP-optimal �lter coef-
�cient vector on a Rayleigh fading channel can be
deduced from [5, p. 742, Eq. (14.36)] as

f
T
j;MAP = r

T
j

�
R+

1


h
I

�
�1

: (5)

where rj =
2



[RI (jL); : : : ; RI((j+K�1)L)]T , with

RI(�) =



2
J0(2�fD�). Here, J0(x) is the 0th order

Bessel function of the �rst kind, and fD [Hz] is the
Doppler frequency shift due to terminal movement.

3 BER ANALYSIS

Following [4], the average BER is given as

BER =

PN�1

n=0 Rn � BERnPN�1

n=0 RnPn
; (6)

where Rn is the rate of code n [information
bits/symbol], Pn is the probability that code n is
used, and BERn is the average BER experienced
when code n is used. We have (see e.g. [3])

Pn = Q

�
H;

H
n
r


�
�Q

�
H;

H
n+1
r


�
(7)

where Q(x; y) is the normalized complementary in-

complete Gamma function [7]. Furthermore [4],

BERn =

Z 
n+1


n

Z
1

0

BERn(
 j b
)p(
; b
)d
db
; (8)

where BERn(
 j b
) is the BER experienced when
applying code n, where the choice of n is based on
the belief that the CSNR is b
, while it actually is

. That is, n should be viewed as dependent on b

in the expressions to follow. Furthermore, p(
; b
) is
the joint distribution of the actual and the predicted
CSNR; in our case a bivariate gamma distribution.
To analyze (6) further we must approximate the

BER�CSNR relationship for code n by an analytical
expression which will make (8) solvable. In [4] it was
shown that the BER�CSNR relationship for trellis
codes on AWGN channels is well modelled as

BERn(
jb
) =
�

an � exp (� bn


Mn

); 
 � 
ln
1

2
; 
 < 
ln

(9)

where an and bn are code-dependent constants
found by curve �tting to simulated BER�CSNR

data on AWGN channels. Mn is the size of the
symbol constellation used by the trellis code, and

ln = ln(2an)Mn=bn. We assume that such trellis
codes are used as component codes in our system,
so Equation (9) is valid. For a 2 � J-dimensional
trellis code, meaning that a sequence of J com-
plex (i.e., 2-dimensional) channel symbols results
from J �Rn input information bits, the relation be-
tween code rate and symbol constellation size is [3]
Rn = log2(Mn)� 1=J . This expression will be used
in Equation (6) when evaluating the average BER.
Applying (9) and inserting the bivariate gamma

distribution, it is possible to derive a general closed-
form expression for Eq. (8). The result is a sum of
three terms, BERn = I1(n) � (I21(n) � I22(n)),
where I1(n), I21(n), and I22(n) are integrals over
the range [
n; 
n+1i for b
 of

J 1(n; b
) = Z
1

0

an exp

�
�bn


Mn

�
p
;b
(
; b
) d
;

J 21(n;b
) = Z 
l
n

0

an exp

�
�bn


Mn

�
p
;b
(
; b
) d
; and

J 22(n;b
) = 1

2

Z 
l
n

0

p
;b
(
; b
) d
 (10)

respectively. Manipulations yield closed form ex-
pressions, which unfortunately are too long-winded
to reproduce here. The system parameters involved
are r, H , and 
h; 
n, 
ln, an, bn, and Mn for
n 2 f1; : : : ; Ng; and �nally the normalized correla-

tion coe�cient between true and predicted CSNR,

� =
Cov(
; b
)p
Var(
)Var(b
) = E[
b
�]p

Var(
)Var(b
) : (11)

Following [6] and using (4),

� =

h
�
f
T
j rj

�2

hf

T
j Rfj + kfjk2 : (12)

By inserting fj;MAP in this expression, we may evalu-
ate the BER in the case of optimal MAP prediction.

4 EXPERIMENTS

We have performed experiments on an example sys-
tem described in [3], designed for BER = 10�4. The
system utilizes N = 8 4-dimensional trellis codes
based on M-QAM constellations, with rates from
1.5 to 8.5 bits per symbol. Values for fang, fbng,
fMng, and f
ng are given in [3, 4].
Figure 2 shows how BER varies with 
h and the

normalized (w.r.t. Doppler period) feedback delay
fD�Ts, for H = 2. The black plane in the �g-
ure represents BER0, so the �ridge� that rises above
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Figure 2: BER as function of normalized delay and

h [dB] for example system. H = 2, BER0 = 10�4.

this plane represents the domain where the system
does not satisfy the BER requirements. The CSNR
range where the system can be expected to operate
properly shrinks as the normalized feedback delay
increases (corresponding to increased terminal ve-
locity or increased delay in seconds). Figure 3 shows
contours at BER = BER0, extracted from similar 3-
D plots, for varying L and H . Each contour divides
the 
h�fD�Ts�domain into a left half-plane where
the system satis�es the BER requirement, and a
right half-plane where it does not. For example, if
the normalized delay is 0.05, L = 15, andH = 2, the
system needs at least an average subchannel CSNR
of 10 dB to operate properly. System robustness
increases as L decreases (which, unfortunately, also
decreases ASE), and as H increases.

5 CONCLUSIONS

An ACM system utilizing trellis codes and designed
to operate under the idealized assumption of perfect
channel state information may still ful�ll the BER
requirements in a realistic setting, unless the chan-
nel exhibits rapid fading due to very fast terminal
movements, or has an extremely low average CSNR.
The use of multiple receive antennas increases the
system robustness considerably, while the choice of
pilot symbol period has a signi�cant impact on the
system robustness. For our example system, 10-20
% of the channel bandwidth should be utilized for
pilot information in order to ensure satisfactory per-
formance. In principle we may also adapt L with re-
spect to 
h, as faster channel sampling is typically
needed to maintain performance at low CSNR.

We reemphasize that our simulation results hold
for MAP-optimal prediction, i.e., we assume per-
fectly known, time-invariant channel model param-
eters, and predictor �lter complexity has not been
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Figure 3: Contours at BER = BER0 as function of
normalized delay and 
h [dB] for varying L, H .

taken into account. It is also known that practi-
cal radio channels may be harder to predict than
a channel with Jakes-like Doppler spectrum. Thus,
the results are probably still best viewed as pro-
viding upper bounds on ACM performance and ro-
bustness. More work is needed to evaluate system
performance when the model parameters are also
time-variant estimates rather than time-invariant
and perfectly known, and when predictor complex-
ity must be limited due to processing delays.
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