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ABSTRACT

In this paper we address the problem of Bayesian model
selection and estimation, of signals that consists of a
sum of complex sinusoids (“cisoids”). This kind of sig-
nal models are abundant in a wide range of engineer-
ing applications, but has usually been treated in a non
Bayesian way. The recent development of Markov Chain
Monte Carlo methods (MCMC) have opened up the pos-
sibility to use Bayesian methods to analyze this kind
of signals. Here we present a new combined model se-
lection and estimation method for the case of signals
with additive white Gaussian noise and known variance.
We demonstrate its use on cisoids closely spaced in fre-
quency, using the Jeffrey prior.

1 INTRODUCTION

The recent development of the reversible jump Markov
Chain Monte Carlo method [3] has opened a possibility
to perform Bayesian model selection and estimation for
complex models in a number of fields. In the signal pro-
cessing community, this methodology has been applied
to the problem of sinusoidal estimation and model se-
lection in the work of Andrieu and Doucet [1]. In this
paper, the problem is approached under somewhat dif-
ferent assumptions. The main difference is that in [1] the
noise variance was assumed unknown, and that a rather
particular choice of prior distributions made it possible
to analytically marginalize the amplitude and the noise
variance parameters. That resulted in a reduction of
the dimension of the problem, that is beneficial to the
MCMC simulation, but the computation of acceptance
probabilities required the computation of a projection
matrix on the signal subspace.

In many engineering applications (e.g. radar) the
noise variance is known, or can be estimated from aux-
iliary data. In this paper we show that, in the case of
known noise variance, it is possible to choose a proposal
distribution for the amplitudes in such a way that the
complexity of the computation of acceptance probabili-
ties is greatly reduced. The sampling of the amplitudes
also enable us to freely choose prior distributions, and

we specifically use the Jeffreys prior. We demonstrate
that, with this prior, a combined model selection and
estimation procedure can be designed which is “well be-
haved” for closely spaced frequencies at a low signal to
noise ratio.

2 SIGNAL MODEL

The type of signals that we are considering, is a sum of
complex sinusoids (cisoids) in white Gaussian noise of
known variance o2. The signal is then an N-dimensional
complex vector x, that is complex Gaussian distributed
CN(s,0%ly), where s = Ele aym(w;) with m(w) =
[1 e .. .ej(N_l)“’]T. The quantities that we are esti-
mating are 6 = (k, 0) where 0 = [a1 ... ax,w: ... wi]",
and the likelihood is:
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As we are using a Bayesian methodology we seek the
posterior distribution:

f(x|0k7 k) f(oka k)
fx)

and estimators such as the Maximum Aposteriori
(MAP):

f(ka 0k|X) =

% = Argmaxy f(k[x) f(k[x) = / F(k, 04 [x)d0,
and the conditional mean:
mz/mﬂmmmwk

The Reversible Jump MCMC sampler derived in section
4 draws samples from f(k,0y|x) and are then used to
approximate the integrals above. The choice of the prior
distribution f(@%,k) will be discussed in the next sec-
tion. We will make the assumption that the frequencies
are ordered: 0 < wj < w2 < ... < wg < 27. The param-
eters @}, of order k are points in O = CK x [0..27T)K,

maz

and the overall parameter space is © = Ui:o {k} x Oy,



3 PRIOR DISTRIBUTIONS

The choice of prior distributions is central to the
Bayesian paradigm. The design of a Bayesian algo-
rithm is determined by this choice, and by the choice
of the decision procedure. We will in this section de-
scribe the choice of prior distributions used in the simu-
lations. Note that the MCMC sampler described in the
next section is not dependent on this choice.

Because the problem at hand does not contain any
particular prior information, we seek a “noninforma-
tive” prior distribution. The Jeffreys prior, i.e. |I(0)|1/ 2
where I(@) is the Fisher information matrix, can for es-
timation problems be motivated as “noninformative” by
information geometric arguments [4]. For the current
signal model, it has the intuitively appealing behavior
of going to zero when the frequency difference between
two cisoids tends to zero, or when the magnitude of an
amplitude tends to zero. Thus it formalizes the idea of
distinguishable signals. The Jeffreys prior, being an im-
proper prior, can appear to be problematic for the model
selection problem; but following the reasoning in [2] one
can justify a choice: f(O,k) = k¥ |I(0k)|1/2 where & is
a dimensionless constant. We use an approach similar
to classical detection theory, where a threshold is deter-
mined from a predetermined false alarm rate. In our
case, we consider a MAP choice between a model with
one cisoid or no cisoids, and a signal that contain noise
only. In this case, it is possible to analytically evaluate
an approximation to the false alarm rate as a function
of k. We use this to find the value of k for a suitable
false alarm rate (one finds that & is proportional to 1/N
and has a quite complex dependence on the false alarm
rate).

We can unfortunately not, due to space limitations of
this paper present the expressions for the prior and the
false alarm rate analysis.

4 REVERSIBLE JUMP MCMC SAMPLING

The reversible jump Markov Chain Monte Carlo method
introduced by Green in [3] makes it possible to sam-
ple distributions defined over complex spaces such as ©.
This method is similar to the well known Metropolis-
Hastings method, in that the algorithm propose a move
to a candidate state, then evaluate an acceptance prob-
ability, and accept the move with that probability or
otherwise remain at the current state. In this case, the
moves can be moves between subspaces of different di-
mension, and there can be a number of types of moves.

In our sampler, we use for each k: k updating moves
that only change the parameters for one cisoid, and
k birth and k death moves which add or remove one
cisoid. We denote the move type by a triple m €

’,jgg” {k} x {1..k} x {0,+, —}, and denote by a tilde all
proposed quantities. The acceptance probability for a
move of type m taking @ into @ are denoted by a., (0, 0).
According to [3] one should, in order to sample from a

distribution p, chose

o (0,0) = min {1, MJ}

p(6) 4 (6,6)

where ¢, (0, 5) is the probability to propose 0 by move
m when currently in 6. The J in the formula above is
the determinant of the Jacobian of a bijective function
which takes (@, u;) into (8, uz), where u; and us are the
random variables that goes into the construction of the
proposals. In our case, where we update the parameters
for one cisoid, draw new parameters for a new cisoid, or
remove the parameters for one cisoid, we always have
J =1 [3]. The acceptance probability for the sampling
of our posterior distribution can now be written as :

f(5E7 E) f(x|6E7 E) dm (6a 0) }

F (O, k) f(x]0k, k) 4 (6, 0)

As always in MCMC methods, a high acceptance prob-
ability is desirable, and a good choice of proposal distri-
butions becomes important. It is also, from a practical
point of view, important to have an acceptance proba-
bility that is not to demanding to compute. We will see
that the choice to sample the parameters for one cisoid
at the time, together with a particular choice of pro-
posal distributions will result in a simple expression for
the acceptance probability.

Introducing 6y, for 8, with w; and a; removed, and

0 (6,8) = min {1,

v(@r 1) =x— anzl,m# amm(wy,), we can write the
likelihood of x as:

F(xlk, 8) = (r0%) N exp [~ % ly(Ok,-)II’]
xexp [~ 2 Jar — %y, )" m(w)|’]

X exp [—ﬁ |Y(9k,—1)Hm(wz)|2]

Alternatively we write y(0;) = x — anzl QM (W)
and

1 (xlk, 8) = (ro?)™ exp [~ |y (00)]]

We now chose the proposal distribution in the follow-
ing way. For an updating move that changes cisoid [, we
first draw a new frequency w; according to the distribu-
tion N (w;,02), i.e. we use a random walk chain for
the frequencies. We then draw the amplitude a; from
CN(%y(Ok,—1)Fm(ay), "—;), i.e. we use a “Gibbs pro-
posal” for the amplitudes. The acceptance probability
can now be computed as:

a{k,l,o}(aab) = )
(B k) exp[N+,2 0k, 1) m(a)| ]

00) exp] iz |v(Ok,—) ") ]

min < 1,

Choosing a o, less then %’r and an initial w; near the

maximum of |y(6x,—)¥m(w)| will ensure a low rejec-
tion rate and a effective sampling of the high probability



region of the posterior distribution. In the simulations,
o, was set to 0.3%”. The only computationally demand-
ing quantity that has to be evaluated, besides the prior
probability, is y(6r,—;)¥m(w;). To further simplify the
computations, we restrict the frequencies to a number
of discrete sample points, which enable us to make the
computations in the frequency domain.

The birth moves is constructed in such a way that
proposals for a new frequency, @w;, has high probabil-
ity close to the maximum of |y(6;)”m(w)| in the in-
terval w; < w < w41 (where wgy1 should be under-
stood as wi). In the following we denote this maxi-
mum with @y;. Let q‘{"k,l,+}(0,c51) be the proposal dis-
tribution for @;, and then draw the amplitude a; from
CN (%y(0r)Tm(a), "—;) The acceptance probability
can now be computed as:

a{k,l,+}(056) = )
F(Or41,k+1) eXp[N—%Ty |Y(0k)Hm(‘;l)| ]

min = =
’ F(8r.k) D5ty , 41(0,40) Qr

where J, is the ratio between the probability to propose
a birth move at order k& and the probability to propose
a death move at order k + 1. The corresponding death
move just removes cisoid /, with acceptance probability:

a{k,l,—}(aae) =
F(Ok,—1:k—1) T qf 1,143 (Ok,—1,01)

£(O1,k) exp[ﬁ,-z |Y(0k,—l)Hm(wl)|2]

Qr—1

min < 1,

It remains to chose q‘{fk,,,ﬂ(a,@). Here we use a
mixture between a uniform distribution and a Gaussian
centered at Wy,;. The addition of the uniform distribu-
tion is needed to hold up the acceptance ratio for the
death moves in the case when k are greater then the
actual number of cisoids. In this case spurious samples
occurs (with low probability) for any w, and the ac-
ceptance ratio for death moves should not be weighted
down to much when they are far away from @g;. We

. . 2
chose the variance of the Gaussian as mﬁf—w% where

ary = +y(0r)¥m(wy,;). With this choice, we get an
acceptance probability that is constant for &; close to
Wk, for y(6y) equal to a pure cisoid. We can now write:

T 1,41(0,01) = 7t

~ E 3|~ |2
(1= Pu) gz el exp |- b (@ - 002
where P, is the probability for the uniform part of the
mixture.

We implemented the sampler in such a way that a new
sample was recorded after each “sweep”. Where a sweep
consists of first doing a deterministic cycle through all
the updating moves; and then at random propose, either
a birth move, a death move, or nothing at all. In the
simulations the probability for proposing either a birth
move or a death move was set to 0.2.
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Figure 1: Estimates of the frequencies of two cisoids
with varying frequency separation. (a; =as =1)

5 SIMULATION RESULTS

In all the simulations we have used the noise level ¢ = 1
and N = 50 samples. We have generated signals that
contain two cisoids of equal amplitude a; = as = 1,
and various frequency separations less then a Fourier
resolution. We are thus in a region of low signal to
noise ratios, where traditional methods of order selec-
tion, such as MDL, over-estimates the model order [1].
We used 5000 sweeps of the MCMC sampler for each es-
timation, which is considerably less then many reported
uses of MCMC samplers. However, we believe that our
sampler achieves adequate mixing in 5000 sweeps. Do-
ing an experiment running 50000 sweeps, we found that
the estimates did not change much from the estimates
computed using 5000 sweeps. The change was small
compared to the estimation errors.

We used a MAP estimator of the number of cisoids
and a conditional mean estimator for the frequencies and
amplitudes. Changing the frequency separation in steps,
running 20 different noise realizations at each, a total of
420 estimation experiments where done. The results are
illustrated in figure 1. We have plotted the frequency
estimates in cases when one cisoid was determined as
dots, and the case when two cisoids was determined as
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Figure 2: Estimates of the frequencies of two cisoids
with varying frequency separation. (a1 =1, a2 =7 )

+” and ’0o’. The different estimation experiments are
plotted along the vertical axis. In the background, the
true frequencies are plotted as solid lines, and the stan-
dard deviation computed from the Cramer Rao bound
are plotted with dashed lines. There were only six cases
of estimating £ = 3, and there is seven estimates at
k = 2 that fell outside the limits of the plot. We see
in the figure, that the estimator are in agreement with
the Cramer Rao bound, until the separation is about
half a Fourier resolution, it then starts to estimate one
cisoid halfway between the true locations. The results
for the amplitudes are not shown here, but they are also
in agreement with Cramer Rao bound for the k£ = 2
case, and an estimate around 2 for the k = 1 case.

We repeated the simulations above with the only
change that one amplitude was chosen to be (one unit)
imaginary. This is a much harder case then the previous
one, as is indicated by the Cramer Rao bond, and we get
90 cases of estimating k = 3 and 44 of estimating k = 4.
This problem of estimating a too high model order can
be mitigated by using a Bayesian decision procedure for
model selection with a more complex cost function. We
have chosen a procedure that does not count posterior
samples that have frequencies falling outside an inter-

val of £1.5 Fourier resolutions around the mean of the
samples. This will decrease chance of choosing an over
parameterized model, which typically have a broad pos-
terior distribution of the frequencies. This reduced the
estimated cases of k = 3 to 11 and of k = 4 to 1. The re-
sults of frequency estimates are presented in figure 2 in
the same manner as before, and we can note an orderly
behavior in the problematic region.

6 CONCLUSIONS

We have, in this paper, described a reversible jump
Markov Chain Monte Carlo method for the problem
of combined model selection and estimation of multiple
cisoids in additive white Gaussian noise of known vari-
ance. The method, that can be efficiently implemented,
sample all the parameters and enable us to use any prior
distribution.

We argued that the Jeffrey prior is a natural choice,
and showed with simulations that good results could be
obtained for cisoids closely spaced in frequency. The
estimator, using a MAP rule for order selection and
conditional mean estimates for frequencies and ampli-
tudes, produced estimates whose variance attained the
Cramer Rao bound until the separation was decreased
to less then half a Fourier resolution. It then started to
estimate a one cisoid model with frequency half way be-
tween the two, and after a brief transition interval with
some spurious estimates, firmly chose this one cisoid
model with low variance. In the case of a 90 degree
phase difference between the amplitudes of the cisoids,
the MAP selection rule produced many erroneous re-
sults. However, this was mitigated by a modified rule.

The method described in this paper could easily be
extended to a more complex, and thus more applica-
tion specific, signal models as long as the signal can be
written as a sum of components scaled by amplitudes.
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