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ABSTRACT

This paper describes a new hybrid approach which aims
to significantly improve the performance of Automatic
Speech Recognition (ASR) systems when they are
confronted with complex phonetic features such as gem-
ination, stress or relevant lengthening of vowels. The
underlying idea of this approach consists of dividing
the global task of recognition into simple and well-
defined sub-tasks and using hearing/perception-based
cues. The sub-tasks are assigned to a set of suitable
Time-Delay Neural Networks using an autoregressive
version of the backpropagation algorithm (AR-TDNN).
When they are incorporated in the hybrid structure,
the AR-TDNN-based experts act as post-processors
of a HMM-based system which thus acquires the
ability to overcome failures due to complex language
particularities. Results of experiments using either
static or dynamic acoustic features show that the
proposed HMM/AR-TDNN system outperforms that
of the HMM-based system.

1 INTRODUCTION

Architectures of current Automatic Speech Recogni-
tion (ASR) systems are generally compact and frontally
tackle the global recognition task. The monolithic ap-
proach they adopt limits considerably the recognition
performance, particularly when they are faced with
complex phonetic features and/or prosody-sensitive lan-
guage [2]. One sees emerging an increasingly marked
trend within current research which consists of favoring
a scattered architecture of ASR rather than the mono-
lithic one [3]. In this context, we can cite the system
described in [6] which is composed of two parts: the
first consists of an HMM involved in the recognition of
specific phoneme classes and the second is composed of
neural networks trained for the disambiguation of pairs
such as the /m, n/ nasals. The results showed that sig-
nificant improvements of ASR scores were obtained for
both English and French. To better represent temporal
variations in the speech signal, almost all of the men-
tioned ASR systems add higher-order time derivatives

to the set of static parameters.

The approach we propose intends to ‘boost’ the per-
formance of a modular ASR structure in the case of
the complex phonetic features such as gemination, em-
phasis and relevance of phoneme duration. Our solu-
tion consists of placing a hierarchical structure of neural
experts (Autoregressive Time-Delay Neural Networks:
AR-TDNN) downstream in a baseline HMM-based sys-
tem. This configuration seems best indicated to exploit
the discriminating capacities of neural networks. The fi-
nal configuration is intended to be more flexible in order
to be able to easily generalize the identification of pos-
sible new complex features. In order to give additional
discriminability for speech pattern comparison, an in-
clusion of hearing/perception knowledge is carried out
through the use of auditory-based cues.

The outline of this paper is as follows. In section 2
we describe autoregressive time-delay neural networks.
Next, in section 3 we proceed with a description of the
system using the hybrid architecture HMM/AR-TDNN.
The hybrid system is evaluated in section 4 by com-
paring its performances to those obtained by a base-
line HMM-based system. In this latter section we also
discuss the effect of the use of dynamic auditory-based
features.

2 AUTOREGRESSIVE TIME DELAY NEU-
RAL NETWORKS (AR-TDNN)

Because speech is a temporarily unstable phenomenon,
we consider Recurrent Networks (RNs) to be more ad-
equate than feedforward networks in the case of any
classification task dealing with speech. RNs are gen-
erally trickier to work with, but they are theoretically
more powerful, having the ability to represent temporal
sequences of unbounded length. Another consideration
related to phonetic context effects leads us to use a par-
ticular RN: the one proposed by Russel [8] and using
an Autoregressive (AR) version of the backpropagation
algorithm. This type of network can in principle cap-
ture naturally the coarticulation phenomenon of speech.
However, even if RNs using AR perform very well in the
context-dependent labelling, this power turns out to be



source of a disappointment in the case of phoneme time
shifting. The approach we are investigating proposes
to integrate, in addition to the AR component, a delay
component similar to the one used by Waibel’s Time-
Delay Neural Networks (TDNN) [9]. Through this com-
bination, we expect that the ability of the system to
discern the phonological length even in a strong coartic-
ulation context will be increased. The model described
by Russel [8] includes an autoregressive memory which
constitutes a form of self-feedback where the output de-
pends on the current output plus a weighted sum of
previous outputs. Then, the classical AR node equation
is:

P

M
yi(t) = f(bias + Z w; 25 (t)) + Z a;nyi(t —n), (1)
n=1

i=1

where y;(t) is the output of node 7 at time ¢, f(z) is the
tanh(z) bipolar activation function, P is the number of
input units, and M is the order of autoregressive pre-
diction. Weights w; ;, biases, and AR coeflicients a;
are adaptive and are optimized in order to minimize the
output error. Qur proposition consists of incorporating
a time delay component on the input nodes of each layer
and then Equation 1 becomes:
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where L is the delay order at the input. Feedforward and
feedback weights were initialized from a uniform distri-
bution in the range [—0.8,0.8]. A neuron of the AR-
TDNN configuration is shown in Figure 1. An autore-
gressive backpropagation learning algorithm performs
the optimization of feedback coefficients in order to min-
imize the mean squared error noted E(t) and defined as:
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where d; is the desired value of the i** output node.
The weight and feedback coefficient changes, noted re-
spectively w;;m and a;,, are accumulated within an
update interval [Tp,T1]. In the proposed AR-TDNN
version, the update interval [Ty, 7T}] is fixed such as it
corresponds to the time delay of the inputs. The up-
dated feedback coefficients are written as follows:
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and if T'is the frame duration, the weights are as follows:
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Figure 1: AR-TDNN wunit.

The calculation of Aa;,(t) variation is detailed in [8].
The optimization of weights and biases are performed
as in Waibel’s networks [9]. Hence, the Aw; ; variations
are accumulated during the update interval after accu-
mulating Time-Delay frames at the input.

2.1 Ear-Based Acoustic Attributes

Cues derived from hearing phenomena studies are ex-
tracted thanks to the Caelen ear-model [1]. In this
model, the internal ear is represented by a coupled
filter bank where each filter is centred on a specific
frequency. The filters’ number can be limited to 24
covering a 16 Hz-12000 Hz frequency range. The 24-
channel spectrum obtained in the output of the 24
coupled filters can be used directly as input data.
Furthermore, from a particular linear combination of
the outputs of these channels, 7 cues are derived:
acute/grave (AG), open/closed (OC), diffuse/compact
(DC), sharp/flat (SF), mat/strident (MS), continu-
ous/discontinuous (CD) and tense/lax (TL). These in-
dicative features are very relevant to characterize the
phonemes of many languages [5]. Over each phone, an
average of the ear-based indicative features is calculated
and used as inputs in the AR-TDNN experts.

2.2 AR-TDNN vs. TDNN

AR-TDNNs are trained by using the Nguyen-Widrow
initialization conditions [7]. The TDNN part of the sys-
tem consists of three layers. Each unit in the hidden
layer receives input from the coefficients in the three-
frame window of the input layer. The input is centred
around the hand-labelled phones. Experiments using
approximately 6000 phonemes uttered by six speakers
are carried out in order to compare the performances of
AR-TDNNs and TDNNs. The results given in Figure 2
show that the AR-TDNN with a macro-class recognition
rate average of 82% surpasses significantly the standard
backpropagation-based system with a global 77,5%. A
significant difference of accuracy in favour of AR-TDNN
is observed in the case of semantically-relevant length-
ening of phonemes. This experiment confirms the capa-
bility of the AR-TDNN configuration to simultaneously
perform context-sensitive decisions and to capture the
temporal component.
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Figure 2: Comparison of TDNN and AR-TDNN perfor-
mances over macro-classes.

3 HMM/AR-TDNN HYBRID STRUCTRE

Training the HMM/AR-TDNN on an utterance pro-
ceeds in two steps. The first step performs optimal align-
ment between the acoustic models of phones and the
speech signal. In the second step the AR-TDNN system
acts as post-processor to the HMM-based system and
refines its recognition results. The global task is then
divided between the main system constituted by the
HMM-based system and the ‘booster’ system composed
of AR-TDNN. We require HMM to achieve phone identi-
fication without discriminating between long and short
vowels and between emphatic and non-emphatic con-
sonants. The gemination detection is also not required.
The hand-labelled data set input to HMM presents a sin-
gle label for phonemes belonging to these macro-classes.
For instance, in the case of short vowel /a/ and long
vowel /a:/, a unique /A/ label is given. The /A/ se-
quence of phones is presented to the AR-TDNN sys-
tem which makes final and finer decisions related to the
long/short vowel discrimination.

Because of the importance of the phonetic context
for performing phoneme identification, a careful analy-
sis must be done for selecting the learning set. The su-
pervision of this learning considers phones as complete
items. The coarticulation effect makes this supervision
difficult. The adopted solution consists of executing
the learning phase as if a phone of the target-phoneme
appears in the speech continuum, the AR-TDNN acti-
vation arises gradually in the output. In the example
of emphatic consonant detection/classification, the task
consists of learning to recognize the following sequence:
LCE-EMPH-RCE: LCE is the left phonetic context of
the emphatic consonant (noted LCE) and RCE is its
right phonetic context. EMPHA_NET (emphasis expert
network) receives three input tokens at a time t and it
must detect an emphatic sequence from any other se-
quence combination. The learning sets the output at
the high level (+1) when the end of the LCE-EMPH-
RCE sequence is attained. The low level (—1) is set
otherwise, i.e. if a scrolling (stream) of non-emphatic
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Figure 3: General overview of the hybrid ASR system.

phone sequences is observed. An autoregressive order
of 2 is chosen and a delay of 2 phones is also fixed.
These lower values of delay and order are justified by
the fact that phones are used instead of frames. Conse-
quently the stability of AR nodes is ensured. Besides the
EMPHA_NET system, other AR-TDNN-based expert
systems are provided: DURA_NET and GEMI_NET.
They respectively perform long-short vowel discrimina-
tion and Geminated-Non-Geminated opposition detec-
tion. These tasks are accomplished according to the
same protocol used by EMPHA_NET.

4 EXPERIMENTAL RESULTS

In order to recognize the speech data, the HTK-based
speech recognition system described in [4] has been used
throughout all experiments. HTK is an HMM-based
speech recognition system. The toolkit can be used for
isolated or continuous whole-word/phone-based recog-
nition systems. The toolkit was designed to support
continuous-density HMMSs with any number of state and
mixture components. In all our experiments, 24 coef-
ficients represent the outputs of the filter bank which
simulate the basilar membrane of the ear. These co-
efficients were calculated on a 30-msec Hamming win-
dow advanced by 10 msec each frame. This vector
constitutes a 24-dimensional static vector upon which
the HMMs, that model the speech subword units, were
trained. The baseline system for the recognition task
uses mono-Gaussian mixture HMM system. As is men-
tioned in section 2.1, 7 ear-based indicative features are
used as AR-TDNN input. This vector is expanded by a
component representing the middle ear energy [1]. Thus,
in a first experiment an 8-dimensional (static) vector is
used by the AR-TDNN experts. In a second experiment,
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Figure 4: Percent phoneme recognition performance of
HMM and HMM/AR-TDNN using static and dynamic
parameters.

dynamic parameters are considered. The first deriva-
tives of the 8 components of the AR-TDNN input are
embedded in the original vector in order to constitute a
16-dimensional (static+dynamic) vector. In the HMM
part, a decimation is used to constitute a 12-dimensional
static vector, which is expanded by its first derivative to
produce a 24-dimensional (static+dynamic) vector.

We compare the hybrid HMM/AR-TDNN system to
a baseline HMM-based system. These results concern
60 VCV utterances and 50 phrases pronounced by 6
speakers. As a whole, the test concerns 3724 vowels
(1348 long), 1197 fricatives (182 geminated, 193 em-
phatics), 1089 plosives (215 geminated, 273 emphatics),
573 nasals and 413 liquids. The analysis of the results
revealed that the hybrid configuration is more accurate
in all cases of complex phonemes. In the case of static
analysis, we found that the HMM/AR-TDNN system
achieved 86% accuracy, which represents 6% fewer errors
than the HMM baseline system. Concerning the stan-
dard HMM, we noticed that it failed dramatically in the
discrimination of long and brief vowels. An imbalance of
performances reaching 20% in the case of /a:/ and /a/
vowels is observed. In the case of emphatic consonants,
the hybrid system performs with 12% fewer errors than
standard HMM. The same trend is observed when dy-
namic parameters are used. The hybrid and monolithic
systems using dynamic features obtained, respectively,
87% and 81% phoneme recognition rates. We must un-
derline the fact that the improvement reached by the
structural modification of the ASR system is more sig-
nificant than the inclusion of dynamic features : 6% vs.
1%. The cumulative improvement is about 8% if both
hybridizing and inclusion of first derivatives are consid-
ered.

5 CONCLUSION

A hybrid approach for speech recognition was presented.
Our objective was to test the ability of a system com-
bining HMM and AR-TDNN to detect features as sub-
tle as gemination, emphasis and relevant lengthening
of vowels. This hybrid system has been compared to
a baseline HMM-based system. Considering the ob-
tained results, it seems clear that the proposed hybrid
HMM/AR-TDNN approach improves significantly (8%)
performances of standard HMM. The split of the global
speech recognition task into subtasks assigned to more
adapted systems, conjugated with the use of dynamic
ear-based features, constitutes from our point of view a,
powerful and promising way to overcome problems due
to language particularities. Hence, the generalization
can easily be considered in the context of multi-lingual
ASR.
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