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ABSTRACT
Blind source separation is concerned with estimating n
source signals from m measurements that are generated
through an unknown mixing process. In the underdeter-
mined linear case, where the number of measurements
is smaller than the number of sources, the solution can
be obtained in three stages: represent the signals in a
sparse domain, estimate the mixing matrix, and evalu-
ate the sources using the available previous knowledge.
This paper deals with the second stage, that can be
formulated as to find the peaks location of a probabil-
ity density function (PDF). It is shown that when the
premise of sparse signals is satisfied, the densities re-
semble the power spectral density (PSD) of sinusoids in
noise. The analogy between a PDF and a PSD allows us
to apply spectral estimation techniques to determine the
mixing matrix. According to the shape of the PDF’s,
parametric methods for line spectra have been applied.

1 INTRODUCTION

The blind source separation problem consists of estimat-
ing n statistically independent sources from m measure-
ments that are an unknown function of the sources. The
noise-free linear model for each sample is

As = x, (1)

where s ∈ R
n is the source random vector, x ∈ R

m is
the measurement random vector, and A ∈ R

m×n is the
unknown mixing matrix.

In the underdetermined case, when less measurements
than sources are available (m < n), the separation pro-
cess can be divided in three stages [1, 2]: to represent
the signals in an appropiate sparse domain, to estimate
the mixing matrix, and to invert the underdetermined
linear problem (1). In this paper we focus on the second
stage.

There have been different approaches taken towards
estimating the mixing matrix. Lin et. al use competi-
tive learning in a feature extraction framework [3]. Bofill
and Zibulevsky employ a potential function based clus-
tering approach [1]. Wu uses an eigenspread estimation
to decide when only one source is active, and uses this

information to find the columns of the mixing matrix
[4]. On a previous paper [5], we addressed the underde-
termined problem with two measurements and reduced
the problem of estimating the mixing matrix to estimate
the peaks of the probability density function (PDF) of
the angles of the measurements. To that end, we used a
non-parametric maximum-likelihood approach based on
Parzen windowing.

In this paper, we exploit the parallelism between the
probability density function (PDF) of a random vari-
able and the power spectral density (PSD) of a related
random process [6, 7]. Once the problem is formulated
in this way, any spectral estimation technique can be
applied to estimate the mixing matrix. In particular,
we show that the source sparsity condition leads to a
model of sinusoids in noise, so high-resolution paramet-
ric methods for line spectra seem the most appropiate.

The paper is organized as follows. In section 2 we
introduce a probabilistic sparsity model for the sources
and formulate the problem of estimating the mixing ma-
trix as the problem of estimating a PDF. In section 3 we
point out the parallelism that exists between estimating
the PDF of a discrete random variable and estimating
the PSD of a related moment-generating sequence. In
section 4 we show that the model of sinusoids in noise
is appropriate to estimate the PDF’s under the spar-
sity premise. In section 5 we present numerical results
obtained in estimating the mixing matrix of an underde-
termined problem with the Estimation of Signal Param-
eters via Rotational Invariance Techniques (ESPRIT)
method [8, 9]. In section 6 we present the conclusions
of the work.

2 MIXING MATRIX ESTIMATION

The performance of the solution of the underdetermined
BSS problem depends highly on the sparsity of the
sources [2, 5]. The higher the probability of the sources
of being zero or negligibly small, the better we can do in
estimating the sources from the measurements. When
the original sources do not satisfy the sparsity condition,
a suitable linear transformation should be applied be-
forehand [1, 10]. To parametrically model sources with
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Figure 1: Scatter plot of measurements and histogram
of angles for sparsity factors 0.1 —subfigures (a) and
(b)— and 0.9 —subfigures (c) and (d).

different degrees of sparsity, the following model for the
source densities is used

pSj (sj) = pj δ(sj)+ (1−pj)fSj (sj), j = 1, . . . , n, (2)

where sj is the j-th source, pj is the sparsity factor for
sj , and fSj(sj) is the PDF when the source j —that
is assumed to be zero-mean— is active. This model
provides a framework to characterize the behaviour of
the algorithms for the underdetermined BSS problem as
a function of the sparsity of the sources.

Equation (1) can be interpreted from a geometrical
point of view as the projection of the source vectors s
from R

n into the vector space R
m of the measurement

vectors x. If we denote by aj the j-th column of the
mixing matrix, so that A = [a1,a2, · · · ,an], (1) can be
rewritten as

x =
n∑

j=1

sjaj , (3)

that explicitly shows that the measurement vector is a
linear combination of the columns of the mixing matrix.
According to this interpretation, if at a given time only
the j-th source is non zero, the meassurement vector will
be collinear with aj . To illustrate the dependence of the
measurements with the sparsity factor of the sources,
a case with m = 2 and n = 3 is shown in figure 1.
Subfigures (a) and (c) show the pattern of the vector x in
the measurement space for sources with sparsity factors
of 0.1 and 0.9 respectivelly. It can be observed that
for higher sparsity factors, the measurements tend to
concentrate more around the three lines that correspond
to the columns of the mixing matrix. It is clear from that
figures that it should be easier to determine the mixing
matrix for sources with a high sparsity factor.

When the number of measurements is two, the
columns of the mixing matrix can be parametrized as
aj = [cos(θj), sin(θj)]T . In doing so, we impose that all
the columns are of unit norm, that is consistent with the
indeterminacy on the scale factors of the sources in the
BSS problem [10]. According to this, to determine A is
enough to estimate the angles θj , j = 1, . . . , m. In prin-
ciple, the angles θj could have any value in the range
[0, 2π], but since the BSS problem also exhibits a sign
indeterminacy in the sources (the separation procedure
does not distinguish between sj and −sj), the angles θj

and θj + π would be indistinguishable. Therefore, the
angles will be considered to belong to the interval [0, π].

A first approach to estimate the angles that charac-
terize the mixing matrix from the measurements could
be to evaluate the angle of x in the measurement space
as

θ = arctan
x2

x1
mod π,

where x1 and x2 are the components of x, and represent
an histogram of the values. The zero measurements are
simply omitted, as they have no well-defined angle. Fig-
ures 1(b) and 1(d) show histograms with 360 bins for
sparsity factors of 0.1 and 0.9 respectivelly. It can be
observed that even for an sparsity factor as low as 0.1
—only ten percent of the sources are negligible— the
peaks of the PDF are clearly identifiable [5]. The an-
gle resolution that can be obtained with the histogram
highly depends on the number of bins used. If we in-
crease the number of bins to improve the resolution, the
number of samples on each bin will decrease and the
variance of the estimation will be higher.

If one looks at the histograms of figures 1(b) and 1(d),
they soon reveal themself as reminiscent of the power
spectral density of sinusoids in noise. With that thought
in mind, a promising method could be to transform the
PDF estimation problem in a spectral estimation one, as
we show in the next section, and to apply high-resolution
techniques to identify the angles of the mixing matrix.

3 PDF AS A PSD

Let U be a continuous random variable in the finite
range [Umin, Umax], and u[n], n = 0, . . . , N − 1, a se-
quence consisting of N independent realizations of U . If
the linear transformation

Ω = −π +
2π

Umax − Umin
(U − Umin) (4)

is applied, Ω is a new continuous random variable in
the range [−π, π]. The sequence of N realizations ω[n]
is obtained from u[n] applying the same linear transfor-
mation. We denote by ΦΩ(ω) the PDF of Ω, that is zero
outside of the interval [−π, π], and build Φ̃Ω(ω) as the
periodic extension of ΦΩ(ω) with period 2π. Accord-
ing to this periodicity, Φ̃Ω(ω) can be considered as the
Fourier transform of a certain sequence,

Φ̃Ω(ω) = F{φΩ[k]}. (5)



This is equation shows the way to estimate PDF’s using
spectral estimation techniques [6, 7]: if we are able to
determine the sequence φΩ[k], its PSD evaluated in the
interval [−π, π] will be the PDF of Ω. Next we show
how to find φΩ[k]. According to (5), the sequence φΩ[k]
is the inverse Fourier transform of Φ̃Ω(ω)

φΩ[k] =
1
2π

∫ 2π

0

ΦΩ(ω)ejωk dω, k = 0, 1, . . . , (6)

where ΦΩ(ω) is used instead of Φ̃Ω(ω) since both coin-
cide on the integration interval. Since ΦΩ(ω) is the PDF
of Ω, the integral in (6) can be considered as the mean
value of the exponential that is multiplying to the PDF

φΩ[k] =
1
2π

E{exp(jΩk)}, k = 0, 1, . . . ;

that is, the sequence φΩ[k] consist of scaled samples of
the moment generating function of the random variable
Ω. Therefore, to estimate the PDF of Ω, the sequence
φΩ[k] has to be estimated before. To that end, the sam-
ple moment estimator

φ̂Ω[k] =
1

2πN

N−1∑
n=0

exp (jω[n]k), k = 0, 1, . . . , (7)

can be used. According to the preceding discussion, the
procedure to estimate the PDF of U from the sequence
u[n] can be summarized as follows:

1. Generate ω[n] applying (4) to u[n].

2. Generate φ̂Ω[k] using (7).

3. Use (5) to estimate the PDF ΦΩ(ω) applying a spec-
tral estimation technique.

4. Invert the linear transformation (4) to obtain the
PDF of the original random variable U .

4 SIGNAL MODEL

In our problem, the role of U is played by the random
variable Θ, whose realizations are the angles θ[n] of the
measurement vector x[n]. Since these angles are already
periodic with a period of 2π, the linear transformation
from U to Ω and the periodic extension is not strictilly
necesary in this case. However, because of the sign am-
biguity in the BSS problem, Θ is considered as a random
variable on the range [0, π].

By observing the histograms of figure 1, it is apparent
that they resemble quite close the PSD of sinusoids in
noise. Therefore, from the whole set of spectral estima-
tion methods, the most appropriate for the estimation
of the angles of the mixing matrix seem to be those ori-
ented to the estimation of line spectra. We would like to
point out two important aspects about the signal model
by looking carefully at figures 1(b) and 1(d) considered
as PSD’s. On the one hand, it is clear than n spectral
peaks —one for each column of the mixing matrix— are

present, so the model order should be chosen equal to
the number of sources. On the other hand, it is also
quite obvious than there is a noise that depends on the
sparsity factor of the sources. It should be stressed than
the cause of this noise is the simultaneity of the sources
—recall that, according to (3), the measuraments are
collinear with the columns of the mixing matrix when
only one source is active—, and has nothing to do with
noise in the measurements, since the model of (1) is
noise-free. Even if this noise does not adhere to the
circular white noise model that is usually supposed in
the parametric methods for line spectra, very accurate
frequency estimations are obtained with subspace-based
methods, as we will show in the numerical results. With
those considerations, the PSD that we are trying to es-
timate conforms with the following model

ΦΩ(ω) = 2π

n∑
j=1

α2
jδ(ω − ωj) + σ2,

where αj are the sinusoids amplitudes, δ(ω) is the Dirac
impulse, and σ2 is the noise level. The only parame-
ters to estimate are the frequencies ωj , j = 1, . . . , n;
from which the angles of the mixing matrix are readly
obtained.

5 NUMERICAL RESULTS

An underdetermined problem with m = 2 measurements
and n = 3 sources has been studied. The sources real-
izations have been generated according to model in (2),
with fSj (sj) as Gaussian densities of zero mean and unit
variance. Two kind of Montecarlo simulations have been
performed. On the one hand we have characterized the
performance of ESPRIT in estimating the mixing ma-
trix for sources with different sparsity factors. On the
other hand we have evaluated the performance against
the number of available measurement realizations. The
figure of merit we use to characterize the performance
of the estimation procedures is the mean-squared error
(MSE) in angle estimation, defined as

MSE =
1
Q

Q∑
q=1

1
m

m∑
j=1

(θj − θ̂j)2,

where Q is the number of simulations used in the Mon-
tecarlo method, m is the number of sources, θj are the
true angles, and θ̂j are the estimations.

In figure 2 we show the MSE obtained when estimat-
ing the mixing matrix both with the histogram (using
360 bins) and with ESPRIT. The error is plotted against
the sparsity factor of the sources. One thousand real-
izations of the measurements have been simulated, and
one thousand values of φ̂Ω[k] have been generated ac-
cording to (7). The results shown have been obtained
by a Montecarlo simulation with twenty mixing matri-
ces. As it was expected, the error is greater for lower
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Figure 2: MSE in angle estimation versus sparsity fac-
tor for ESPRIT (solid line) and histogram (dashed line)
with 360 bins.

sparsity factors. For sparsity factors bigger than 0.2, a
big portion of the MSE in the histogram estimation is
due to the finite bin length. It can be observed than
very accurate estimations (MSE on the order of 10−10)
are achieved with ESPRIT. In figure 3 we show the MSE
against the number of available realizations of the mea-
surements for a fixed sparsity factor of 0.5. It can be
observed that, for this sparsity factor, there is a signif-
icant point at about fifteen available realizations: the
results greatly improve when the number of realizations
is slightly greater. The results have been obtained from
a Montecarlo simulation with fifty mixing matrices.

6 CONCLUSIONS

We have formulated the problem of finding the mix-
ing matrix in the instantaneous underdetermined lin-
ear BSS as estimating the peaks of a PDF. To estimate
those peaks we have exploited a duality between the
PDF of a random variable and the PSD of a derived
random process that has allowed us to apply spectral
estimation techniques in the estimation of the mixing
matrix. Since the original PDF resembles the PSD of
sinusoids in noise, high-resolution parametric methods
for line spectra are the most appropriate. We have stud-
ied the performance of ESPRIT in estimating the mixing
matrix as a function of the sparsity factor of the sources,
and conclude that it provides very good results even for
very low sparsity factors. We have also characterized
the performance of the estimation versus the number of
realizations available. As future lines of work, we have
identified to tracking of the mixing matrix in a non-
stationary environment, using non-linear least-squares
techniques to deal with the colored noise, and apply-
ing multidimensional spectral estimation techniques for
cases with more that two measurements.
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Figure 3: MSE versus the number of available realiza-
tions for ESPRIT (solid line) and histogram (dashed
line) with 360 bins. The sparsity factor is 0.5.
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