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telex 512302 plg pl fax (48 58) 415821

ABSTRACT

The problem of estimation of a frequency of a complex
sinusoidal signal buried in white measurement noise is
considered. It is shown that, for a fixed model order, the
variance of the autoregressive frequency estimates can
be significantly reduced if the signal is decimated prior
to modeling. To obtain comparable results by means
of processing the signal in the original time scale, one
may be forced to use autoregressive models of very high
orders. Therefore the major advantage of decimation is
dramatic reduction in computation.

1 Introduction

Consider the problem of estimation of a frequency of
a complex sinusoidal signal buried in white measure-
ment noise. The problem of frequency estimation is
archetypical. There is a large body of statistical lit-
erature devoted to comparison of various spectrum es-
timation techniques in terms of their accuracy and/or
resolution – see e.g. [1], [3], [4], [6]. The aim of this
paper is different. We focus on a particular parametric
frequency estimation technique and investigate how its
accuracy is affected by the time scale adopted for the
underlying signal model.
The paper can be considered a continuation of the work
of Quirk and Liu [5]. Quirk and Liu examined the au-
toregressive spectrum estimators and showed that their
resolution (i.e. the ability to separate neighboring fre-
quencies) can be substantially increased, in the prese-
lected frequency bands, by means of signal decimation.
The analysis presented in [5] is carried out for a ‘theo-
retical’ autoregressive spectrum, i.e. the one obtained
for a known sequence of true autocorrelation coefficients
of the analyzed signal. Even though all findings are well
supported by the results of finite sample experiments,
they allow one to infer about the spectral resolution
problem only – the accuracy issues are not considered.
Since decimation increases the signal to noise ratio but,
at the same time, decreases the number of the available
samples, its net effect on the estimation accuracy is not
obvious. The paper clarifies this issue. Even though
the analysis is restricted to a relatively simple case (one

complex sinusoid buried in white additive measurement
noise) the obtained results seem to provide insights into
a more general and rarely discussed problem in system
identification.

2 Frequency estimation

Suppose that the available data, obtained by uniform
sampling of a continuous-time signal, consists of N sam-
ples

x(t) = Aejω0t + n(t), t = 1, . . . , N (1)

where t denotes the normalized discrete time – a di-
mensionless multiplier of the sampling interval Ts, ω0 =
2πTsf0, |ω0| ≤ π, denotes the normalized digital angu-
lar frequency, and A is the complex amplitude. We will
assume, that n(t) = n1(t) + jn2(t) ∼ N (0, σ2

n) is an
i.i.d. complex Gaussian measurement noise with inde-
pendent and identically distributed real and imaginary
parts (E[n2

1(t)] = E[n2
2(t)]).

To estimate the unknown frequency ω0 we will build the
first-order autoregressive (AR) model of x(t)

x(t) = ax(t− 1) + e(t), (2)

where e(t) denotes the modeling error. The unknown
autoregressive coefficient a can be estimated from the
available data using the method of least squares

â(N) = arg min
a

N∑
t=2

|x(t)− ax(t− 1)|2

=
∑N

t=2 x(t)x∗(t− 1)∑N
t=2 |x(t− 1)|2

(3)

and the estimate of ω0 can be obtained by examining
the angular location of the pole associated with the AR
model

ω̂(N) = arg â(N) = arg r(N) (4)

where

r(N) =
N∑

t=2

x(t)x∗(t− 1)

=
N∑

t=2

(Aejω0t + n(t))(A∗e−jω0(t−1) + n∗(t− 1)). (5)
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Such choice of ω̂(N) is equivalent to maximization of the
power spectral density corresponding to the AR model.
The method described above can be also interpreted as
the first-order Prony’s approach – see Section 4 for more
comments.
Let p(N) = Re{r(N)} and q(N) = Im{r(N)}. Observe
that ω0 = arg r0 where r0 = E[r(N)] = p0 + jq0 =
(N − 1)|A|2ejω0 . The following approximation will be
used to estimate the mean square frequency estimation
error

ω̂(N)− ω0 = arctan
p0 + ∆p

q0 + ∆q
− arctan

p0

q0

∼= q0 ∆p− p0 ∆q

(1 + (p0/q0)2)(q0 + ∆q)q0

∼= q0 ∆p− p0 ∆q

p2
0 + q2

0

(6)

where ∆p = p(N)−p0 and ∆q = q(N)−q0. The second
transition in (6) stems from the Taylor series approxi-
mation

arctan x− arctan x0
∼= x− x0

1 + x2
0

and the last transition is the result of neglecting the
term ∆q in the denominator.
Using (6) one arrives at the following expression (see
Appendix)

E[(ω̂(N)− ω0)2] ∼= 1
2ξ2(N − 1)

+
1

ξ(N − 1)2
(7)

where ξ = |A|2/σ2
n is the signal to noise ratio. This

expression will serve as a starting point for our analysis
of the benefits of signal decimation.

3 The benefits of signal decimation

In many applications frequency search can be limited
to a relatively narrow frequency band known a priori.
For example, in the mobile radio transmission system
considered in [2], analysis of the physical constraints,
such as the carrier frequency, the bit rate and the max-
imum vehicle speed, allow one to restrict the possi-
ble range of Doppler shifts, characterizing the chan-
nel’s time variation, to a certain interval [−ωmax, ωmax],
where ωmax ¿ π (e.g. ωmax = π/30). In some other
cases the admissible frequency range takes the form
[ωmin, ωmax], where ωmax − ωmin ¿ π. To simplify fur-
ther considerations we will restrict analysis to the low-
pass case only, but all results can be easily generalized
to bandpass limitations.
Suppose that the estimated frequency is limited from
above |ω| < ωmax and denote by d the integer-valued
decimation rate. The decimated time series x̃(t) can
be obtained by taking every d-th sample of the lowpass-
filtered input series (for convenience it was assumed that
the number of available samples N is an integer multiply
of d)

x̃(t) = xf (td), t = 1, . . . , Ñ , Ñ = N/d (8)

where
xf (t) = L[x(t); π/d], (9)

and L[·; ωc] denotes lowpass filtering with cutoff fre-
quency ωc. Note that when d < dmax = π/ωmax, the
explored frequency band remains within the frequency
range of the decimated signal. The filter preserves the
spectrum inside the band of interest and suppresses the
aliasing caused by subsequent down-sampling by d.

3.1 Ideal filtration
First of all, we will consider the case where L is an ideal
lowpass filter. Such filter preserves without changes the
sinusoidal component of x(t) and reduces by the factor
of d the variance of its noise component. Consequently,
in a new time scale (1) should be replaced with

x̃(t) = Aejω̃0t + ñ(t), t = 1, . . . , Ñ (10)

where ω̃0 = ω0d and ñ(t) ∼ N (0, σ2
n/d).

We note that even though the filtered noise nf (t) =
L[n(t); π/d] is correlated, its down sampled version
ñ(t) = nf (td) is, similarly as the original noise sequence
n(t), white. This means that the results derived in Sec-
tion 2 are still applicable, provided that the number of
data points N is replaced with Ñ = N/d and the signal
to noise ratio ξ is replaced with ξ̃ = ξd. Additionally,
since (7) is a large sample approximation, we need to
assume that Ñ À 1 i.e. d ¿ N .
Denote by ̂̃ω(N) the estimate of ω̃0, obtained by means
of processing the decimated time series and by

̂̂ω(N) = ̂̃ω(N)/d

the corresponding estimate of ω0. Straightforward cal-
culations based on (7) lead to

E[(̂̂ω(N)− ω0)2] ∼= 1
2ξ2d3(N − d)

+
1

ξd(N − d)2
. (11)

Comparison of (7) and (11) (note that for d = 1 both ex-
pressions become identical) shows clearly advantages of
signal decimation. Assuming that N À d, the decima-
tion based approach allows one to reduce the variance of
the frequency estimate at least d times, i.e. to increase
estimation accuracy by the factor of at least

√
d.

3.2 Nonideal filtration
Since the ideal lowpass filter cannot be realized in prac-
tice, the results derived in the previous subsection can
serve only as an indication of the limiting bound. To
check how filter nonidealities affect accuracy of the fre-
quency estimates, consider a very simple form of lowpass
filtering – signal averaging

xf (t) =
1
d

d−1∑

i=0

x(t− i). (12)

Note that the decimation scheme which incorporates
(12), corresponds to a very simple form of the time scale
modification, known as data aggregation – each consec-
utive group of d signal samples is replaced with one,
averaged sample.
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When averaging is used, the model of the decimated
signal becomes

x̃(t) = Ãejω̃0t + ñ(t), t = 1, . . . , Ñ (13)

where Ã = A(1+ e−jω0d)/d(1+ e−jω0), and the remain-
ing quantities are defined analogously as in the previ-
ous subsection (in particular, note that aggregation pre-
serves whiteness of the measurement noise). The corre-
sponding expression for the estimation variance is

E[(̂̂ω(N)− ω0)2] ∼= 1
2ξ2

dd3(N − d)
+

1
ξdd(N − d)2

(14)

where

ξd = ξ

(
sin(ω0d/2)
d sin(ω0/2)

)2

denotes the modified signal to noise ratio. Since for
ω0 > 0 it holds ξd < ξ, the estimation variance is larger
than that obtained for the idealized scheme – cf. (11).
However, if the attenuation of the sinusoidal component
of x(t), caused by nonideal filtering, is not significant,
signal decimation allows one to considerably improve
estimation results.

4 Simulation results

Several simulation experiments were carried out to ver-
ify the results of theoretical analysis, as well as to check
some more general research hypotheses, which are diffi-
cult to confirm analytically. The examined time series
consisted of 2000 samples of a complex sinusoidal sig-
nal (A = 1.0, ωo = π/50) buried in a complex white
Gaussian noise (σ2

n = 0.1, SNR=10dB).
Figure 1 (left plot) shows the experimental error curve
– dependence of the mean square frequency estimation
error on the decimation rate d – obtained for the first-
order autoregressive modeling with data aggregation.
All results were averaged over 200 simulation runs, cor-
responding to 200 independent realizations of the noise
sequence. For comparison, two theoretical error curves
are shown in the same figure: one for the method based
on data aggregation (10) and the other one for the
method which incorporates ideal decimation (14). Note
a very good agreement of the experimental results with
the corresponding theoretical evaluations.
Figure 1 (right plot) shows comparison of the error
plots, obtained for the first-order autoregressive model,
in the case where data averaging is combined with down-
sampling (the aggregation approach) and in the case of
averaging without subsequent down-sampling. In the
second case the the signal is analyzed in the original
time scale. Even though in both cases averaging in-
creases the signal to noise ratio by the same amount,
the approach based on data aggregation yields consider-
ably better results. This shows clearly that the accuracy
improvements achieved by signal decimation cannot be
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Figure 1: Comparison of the mean square frequency
estimation errors obtained under data aggregation (+)
with the theoretical error curves derived for aggregation
(solid line) and for the ideal decimation (dotted line).
The right plot shows comparison of the mean square
frequency estimation errors obtained for data aggrega-
tion (+) and for data averaging without down-sampling
(x). All results correspond to the autoregresive model
of order 1.

attributed only to the increase in SNR caused by low-
pass filtering (which is an obvious, and hence somewhat
trivial, effect). The change of the time scale is another
important factor which allows one to further decrease
the estimation variance.
To improve accuracy of frequency estimates in the pres-
ence of measurement noise, one should increase the order
of the autoregressive model beyond the number of sinu-
soidal components. The approach based on factorization
of the overestimated AR model is known as the least
squares Prony’s method [3]. The estimation principles
remain unchanged – the frequency estimates are evalu-
ated as phase angles of complex roots of the characteris-
tic polynomial associated with the AR model. However,
since the number of roots exceeds the number of sinu-
soids, all roots must be divided to signal-related roots,
which are further used for frequency estimation, and
noise-related roots, which are neglected. Inclusion of
the extraneous, noise-related roots at the identification
stage allows for better positioning of the signal-related
roots, and hence increases accuracy of the frequency es-
timates.
Even for a single complex sinusoid buried in additive
noise, statistical analysis of the properties of the high-
order Prony’s method is too difficult to perform. For
this reason we will refer to the simulation evidence. Re-
sults of computer simulations, summarized in Fig. 2
and Fig. 3, shed more light on the problem of frequency
estimation.
First, it seems that decimation is beneficial irrespective
of the order of the applied AR model. The error curve
obtained for the 5th order Prony’s method with signal
decimation (see Fig. 2) resembles the analogous curve
obtained for the first-order model. As expected, rais-
ing the order of autoregression allows one to increase
accuracy of the frequency estimates. Signal decimation
yields even better results.
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Figure 2: Estimation results obtained under data ag-
gregation (+) for the AR model of order 5. The right
plot shows the roots of the characteristic polynomial
obtained in 50 trials using the least squares Prony’s
method. The roots are shown relative to the unit circle.
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Figure 3: Comparison of the estimation results obtained
with data aggregation (+) and without data aggregation
(o). The model orders are equal to 1 and d (left plot)
and 5 and 5d (right plot), respectively.

The second observation is more fundamental and tackles
the model order - time scale equivalence problem. It is
natural to expect that if the analog process is modeled
in two different time scales, one d times smaller than
the other, the model orders should stay in the same
proportions for the results to be equivalent, namely for
fast sampling the order of the model should be d times
larger than for slow sampling. Figure 3 compares re-
sults obtained with signal decimation for the 1st order
and 5th order Prony’s method, with the analogous re-
sults obtained without signal decimation for the models
of orders d and 5d, respectively. Since the correspond-
ing plots are almost identical, it is clear that decimation
does not yield any ‘absolute’ accuracy improvements –
the low-order model offers similar performance as the
high-order model obtained for an undecimated signal.
The major advantage of decimation is reduction in com-
putation. Since parametric frequency estimation re-
quires factorization of polynomials, even for small values
of d the computational savings can be significant. Ad-
ditionally, one avoids technical problems caused by the
fact that with growing model order it becomes increas-
ingly difficult to correctly separate the signal-related
roots of the characteristic polynomial from the noise-
related roots.

Appendix

According to (6)

E[(ω̂(N)− ω0)2] ∼=
E[(∆p)2]q2

0 + E[(∆q)2]p2
0 − 2E[∆p∆q]p0q0

(p2
0 + q2

0)2
. (15)

Using the orthogonality relationships E[n(t)n(s)] =
E[n∗(t)n∗(s)] = 0, ∀t, s and E[n(t)n∗(s)] = δ(t − s)σ2

n,
where δ(t) denotes the Kronecker delta function, one
obtains (after straightforward but tedious calculations)

E[|∆r|2] = E[|∆p |2] + E[|∆q|2] =

2(N − 1)σ2
n|A|2 + (N − 1)σ4

n (16)

and

E[(∆r)2] = E[(∆p)2]− E[(∆q)2] + 2jE[∆p∆q] =

2(N − 2)σ2
n|A|2e2jω0 . (17)

Solving (16) and (17) with respect to E[(∆p)2], E[(∆q)2]
and E[∆p∆q] one obtains

E[(∆p)2] = (N − 1)σ2
n|A|2 + (N − 1)σ4

n/2

+ (N − 2)σ2
n|A|2 cos 2ω0 ,

E[(∆q)2] = (N − 1)σ2
n|A|2 + (N − 1)σ4

n/2

− (N − 2)σ2
n|A|2 cos 2ω0

E[∆p∆q] = (N − 2)σ2
n|A|2 sin 2ω0 .

Finally, after substituting the above expressions into
(15) and noting that p2

0 + q2
0 = |r0|2 = (N − 1)2|A|4,

one arrives at (7).
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