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ABSTRACT

This paper presents a least-pth approach to the optimal de-
sign of 2-D FIR digital filters in the minimax sense. Features
of the proposed approach include: it does not need to adapt
the weighting function involved and no constrains are im-
posed during the course of optimization. More important,
the algorithm enjoys global convergence to the minimax de-
sign regardless of the initial design used. This property is an
immediate consequence of the fact that for each even power
p, the weighted Lp objective function is convex in the en-
tire parameter space. Two minimax designs of 2-D FIR filter
with low passband group delay are included to illustrate the
proposed method.

1 Introduction

The Parks-McClellan algorithm and its variants have been
the most efficient tools for the minimax design of FIR dig-
ital filters [1]–[3]. They however only apply to the class
of linear-phase FIR filters. In many applications, nonlinear-
phase FIR filters (e.g. those with low group-delay) are more
desirable. Several methods for the minimax design of FIR fil-
ters with arbitrary magnitude and arbitrary phase responses
are available in the literature. Among others, we mention
the weighted least-squares approach [4] in which the weight-
ing function is adapted until a near equiripple filter perfor-
mance is achieved; the constrained optimization approach [5]
in which the design is formulated as a linear or quadratic
programming problem; the semidefinie programming ap-
proach [6] where the design is accomplished by minimizing
an approximation-error bound subject to a set of linear and
quadratic constraints that can be converted into linear matrix
inequalities. For the 2-D case, to date minimax design of
2-D FIR filters has also been largely focused on the class of
linear-phase filters, see [7]–[9] and the references cited there.

This paper presents a least-pth approach to the design
problem. Least-pth optimization as a design tool is not new.
As a matter of fact, it was used quite successfully for the
minimax design of IIR filters, see [3] and the references cited
there. However, it appears that to date least-pth-based algo-
rithms for minimax design of nonlinear-phase 2-D FIR fil-
ters have not been reported. In the proposed method, a (near)
minimax design is obtained by minimizing a weighted Lp

error function without constraints, where the weighting func-
tion is fixed during the course of optimization and power p is
a sufficiently large even integer. We show that for any even
power p, the Lp objective function is convex in the entire pa-
rameter space. This global convexity, in conjunction with the
availability of closed-form gradient and Hessian of the ob-
jective function, provides a basis on that the proposed algo-
rithm is shown to be globally convergent to the minimax de-
sign regardless of the initial design chosen. Compared with
the existing design methods mentioned above, the proposed
method does not need to update the weighting function, and
it is a unconstrained convex minimization approach.

2 Design Formulation

2.1 The p-norm and infinity-norm
The p-norm and infinity-norm of an n-vector v =
[v1 · · · vn]T are defined as

‖v‖p =
( n∑

i=1

|vi|p
)1/p

and ‖v‖∞ = maxi(|vi|, for 1 ≤ i ≤ n). If p is even and the
vector components are real numbers, then

‖v‖p =

(
n∑

i=1

vp
i

)1/p

(1)

It is well known [10] that the p-norm and infinity-norm are
related by

lim
p→∞

‖v‖p = ‖v‖∞ (2)

To get a sense of how ‖v‖p approaches ‖v‖∞, we compute
for v = [1 2 · · · 100]T its p-norm ‖v‖2 = 581.68,
‖v‖10 = 125.38, ‖v‖50 = 101.85, ‖v‖100 = 100.45,
‖v‖200 = 100.07 and, of course, ‖v‖∞ = 100. The point
here is that for an even p, the p-norm of a vector is a dif-
ferentiable function of its components but the infinite-norm
is not. So when the infinity-norm is involved in a (design)
problem, one can replace it by a p-norm (with p even) so that
powerful calculus-based tools can be used to help solve the
altered problem. Obviously, with respect to the “original” de-
sign problem the results obtained can only be approximate.



However, as indicated by (2), the difference between the ap-
proximate and exact solutions becomes insignificant if power
p is sufficiently large.

2.2 The objective function
Given a desired frequency response Hd(ω1, ω2), we want to
determine the real-valued coefficients {hik} in the 2-D FIR
transfer function

H(z1, z2) =
n∑

i=0

n∑
k=0

hikz−i
1 z−k

2 (3)

such that the weighted L2p approximation error

f(h) =


 π∫
−π

π∫
−π

W (ω)|H(ejω) − Hd(ω)|2p dω




1/2p

(4)

is minimized, where for notation simplicity a single ω has
been used to represent (ω1, ω2) and dω is used to denote
dω1 dω2, W (ω) ≥ 0 is a weighting function, p is a positive
integer, and h = [h00 h10 · · · hn0 h01 · · · hN ]T .

If we define

Hd(ω) = Hdr(ω) − jHdi(ω)

c(ω) = [1 cos ω1 · · · cos nω1 cos ω2 · · · cos(nω1 + nω2)]T

s(ω) = [0 sinω1 · · · sinnω1 sinω2 · · · sin(nω1 + nω2)]T

then (4) becomes

f(h) =




π∫
−π

π∫
−π

W [(hT c − Hdr)2 + (hT s − Hdi)2]pdω




1/2p

(5)

where the frequency dependence of W, c, s, Hdr, and Hdi

has been omitted. Now if we definite

e2(ω) = (hT c − Hdr)2 + (hT s − Hdi)2 (6)

then the objective function can be expressed as

f(h) =


 π∫
−π

π∫
−π

W (ω)ep
2(ω)dω




1/2p

(7)

2.3 Gradient and Hessian of f(h)
Using (7), it is straightforward to compute the gradient and
Hessian of objective function f(h) as

∇f(h) = f1−2p(h)

π∫
−π

π∫
−π

W (ω)ep−1
2 (ω)q(ω)dω (8a)

where

q(ω) = (hT c − Hdr)c + (hT s − Hdi)s (8b)

and

∇2f(h) = H1 + H2 − H3 (8c)

where

H1 = 2(p − 1)f1−2p(h)

π∫
−π

π∫
−π

Wep−2
2 qqT dω (8d)

H2 = f1−2p(h)

π∫
−π

π∫
−π

Wep−1
2 (ccT + ssT )dω (8e)

H3 = (2p − 1)f−1(h)∇f(h)∇T f(h) (8f)

Of central importance to the proposed design algorithm is
the property that for each and every positive integer p, the
weighted L2p objective function defined in (4) is convex in
the entire parameter space. See the Appendix for a proof of
this property.

3 Design Algorithm

3.1 The L2p minimization

It is now quite clear that up to a given tolerance, an FIR fil-
ter that approximates a rather arbitrary frequency response
Hd(ω) in the minimax sense can be obtained by minimizing
f(h) in (4) with a sufficiently large p. It follows from the dis-
cussion in Sec. 2 that for a given p, f(h) has a unique global
minimizer. Therefore, in principle any descent minimization
algorithm, e.g., the steepest descent method, modified New-
ton’s method, and quasi-Newton methods [11] can be used to
compute the minimax design regardless of the initial design
chosen. On the other hand, however, the amount of computa-
tion required to accomplish the design is largely determined
by the choice of optimization method as well as the initial
point (design).

3.2 Choice of initial design

A reasonable initial design is the L2-optimal design obtained
by minimizing f(h) in (4) with p = 1. In this case we have

f(h) = (hT Qh − 2hT p + const)1/2 (9a)

where

Q =

π∫
−π

π∫
−π

W (ccT + ssT )dω (10b)

p =

π∫
−π

π∫
−π

W (Hdrc + Hdis)dω (10c)

Since Q is positive definite, the global minimizer of f(h) in
(10) is given by

h = Q−1p (11)

We note that Q in (10b) is a symmetric Toeplitz matrix
for which fast algorithms to compute its inverse are available
[10][12].

3.3 Choice of optimization method

Minimizing convex objective function f(h) can be accom-
plished in a number of ways. Since the gradient and Hessian



of f(h) are available in closed-form, the Newton’s method
and the family of quasi-Newton methods are among the most
appropriate.

From (8), we see that the evaluations of f(h), ∇f(h),
and ∇2f(h) all involve numerical integration. In comput-
ing ∇2f(h), the error introduced in the numerical integration
slightly perturbs the Hessian so that the perturbed Hessian is
no longer positive definite. The problem can be easily fixed
by modifying ∇2f(h) to ∇2f(h) + εI where ε > 0 is a
small scalar. The Newton’s method with above modification
is called the modified Newton’s method [11].

Quasi-Newton methods do not require ∇2f(h) yet pro-
vide efficiency comparable to that of the Newton’s method.
Among others, we choose the Broyden-Fletcher-Glodfarb-
Shanno (BFGS) algorithm [8] which has been a preferred
choice in DSP-related optimization problems [3].

3.4 Direct and indirect implementations

With power p, weighting function W (ω), and initial design
h0 chosen, the design can be implemented directly or indi-
rectly.

A direct implementation applies a selected unconstrained
optimization method to minimize the L2p objective function
in (4). Based on rather extensive trials, it is found that to
achieve a near minimax design the value of p should in any
case be larger than 20, and for high-order FIR filters a power
p comparable to filter order N should be used.

In an indirect implementation, the L2-optimal design ob-
tained by minimizing the L2p function with p = 1 is taken
to be the initial design h0 in a subsequent optimization step
where the objective function is the L2p function with p mod-
erately increased to, say, p = 2. Evidently, it is an “easy”
problem because the minimizer, h1, in this case cannot be
far from the initial point. Next, h1 is used as the initial point
to minimize the L2p function with p = 3. Again, this is an
“easy” problem. The sequential L2p optimization continues
until p reaches a prescribed value.

4 Design Examples

We now present two design examples to illustrate the pro-
posed method. The first is minimax design of a diamond-
shaped 2-D FIR filter of order (n, n) = (16, 16). The de-
sign parameters were: normalized passband edge ωp = 0.8π,
stopband edge ωa = π, passband group delay = 7, W (ω) = 1
in both passband and stopband and W (ω) = 0 elsewhere,
and p = 90. Both direct and indirect implementations using
modified Newton’s method and BFGS algorithm were car-
ried out. As was expected, all trials converge to the same
near minimax design with the modified Newton’s method in
the direct implementation the most efficient: it took the algo-
rithm 74 iterations with 1.01 × 108 Kflops to converge. The
amplitude response of the filter obtained is shown in Fig. 1.

The second example is minimax design of a circu-
larly symmetric bandpass 2-D FIR filter of order (24, 24).
The design parameters were: normalized passband =
[0.35π, 0.65π]; stopband = [0, 0.2π]

⋃
[0.8π, π]; passband

group delay = 11; W (ω1, ω2) = 1 in both passband and
stopband, W (ω1, ω2) = 0 elsewhere; and p = 130. When
the modified Newton’s method was directly implemented, it
took the algorithm 129 iterations with 6.24 × 108 Kflops to
converge. The amplitude response of the bandpass filter ob-
tained is depicted in Fig. 2.
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Figure 1: Amplitude response of the diamond-shaped 2-D
FIR filter.
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Figure 2: Amplitude response of the circularly symmetric
bandpass FIR filter with n = 24.

APPENDIX

In what follows we show that yT (∇2f(h)) y ≥ 0 for any
y. We start by writing

yT∇2fy = a1 + a2 − a3



where

a1 = yT H1y = 2(p − 1)f1−2p(h)
∫∫

Wep−2
2 (qT y)2

a2 = yT H2y = f1−2p(h)
∫∫

Wep−1
2 [(cT y)2 + (sy)2]

a3 = yT H3y = (2p − 1)f−1(h)(yT∇f)2

For simplicity, in a1 and a2 the upper and lower limits as well
as term dω1 dω2 of the integrals have been omitted. Next we
split a1 as a1 = a11 − a12 where

a11 = (2p − 1)f1−2p(h)
∫∫

Wep−2
2 (qT y)2

a12 = f1−2p(h)
∫∫

Wep−2
2 (qT y)2

Hence yT∇2fy = (a11 −a3)+(a2 −a12). Below we show
that a11 − a3 ≥ 0 and a2 − a12 ≥ 0.

• Proof of a11 − a3 ≥ 0

By (8a), a3 can be expressed as

a3 = (2p − 1)f1−4p(h)
[∫∫

Wep−1
2 (qT y)

]2

thus

a11 − a3

(2p − 1)f1−4p(h)

= f2p(h)
∫∫

Wep−1
2 (qT y)2 −

[∫∫
Wep−1

2 (qT y)
]2

=
∫∫

Wep
2

∫
Wep−1

2 (qT y)2 −
[∫∫

Wep−1
2 (qT y)

]2

Writing the integrand in the second term as

Wep−1
2 (qT y) = W

1
2 e

p
2
2 · W 1

2 e
p−2
2

2 (qT y)

and applying the Canchy-Schwarz inequality, we obtain[∫∫
Wep−1

2 (qT y)
]2

≤
∫∫

Wep
2 ·

∫∫
Wep−2

2 (qT y)2

which implies that

a11 − a3

(2p − 1)f1−4p(h)
≥ 0

Since (2p−1)f1−4p(h) > 0 we conclude that a11−a3 ≥ 0.

• Proof of a2 − a12 ≥ 0

a2 − a12

f1−2p(h)
=
∫∫

Wep−1
2 [(cT y)2 + (sT y)2] −

∫∫
Wep−2

2 (qT y)2

Using (8b), (6), and the Cauchy-Schwarz inequality, we have

(qT y)2 = [(hT c − Hdr)(cT y) + (hT s − Hdi)(sT y)]2

≤ [(hT c − Hdr)2 + (hT s − Hdi)2][(cT y)2 + (sT y)2]

= e2[(cT y)2 + (sT y)2]

Hence∫∫
Wep−2

2 (qT y)2 ≤
∫∫

Wep−1
2 [(cT y)2 + (sT y)2]

which implies that

a2 − a12

f1−2p(h)
≥ 0

Since f1−2p(h) > 0, we conclude a2 − a12 ≥ 0 that com-
pletes the proof.
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