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ABSTRACT

The Random Decrement method is a computationally
simple technique which was initially proposed in the
control engineering field for the recovery of impulse re-
sponses of systems under operation. This paper demon-
strates the advantage of formalising this exotic tech-
nique in the context of digital signal processing, thus
bringing it to the fore of modern blind identification
methods. The discrete Random Decrement is shown to
verify a type of Yule-Walker system of equations from
which the poles of the system can be deduced. In ad-
dition, it is proven that the identification of the zeros
(minimum and maximum phase) can be achieved in a
linear sense by increasing the number of observations
to a least three. The conditions of application of the
Random Decrement are relatively broad, and its effec-
tiveness is demonstrated by simulations.

KEYWORDS: Random Decrement, Palm’s distri-
bution, blind identification, ARMA model, Yule-Walker
equations.

1 INTRODUCTION

The Random Decrement method was first introduced
by Henry Cole in 1968 [1] in the context of aerospace
structures, as a time domain technique for recovering
the impulse response of a system excited by unknown
white forces. The technique was later given a mathe-
matical basis by Vandiver et al in 1982 [2], who showed
that it actually gives an estimate of the autocorrelation
function of the system response rather than the impulse
response function itself. These results were derived in
the continuous time domain, thus leading to intricate
equations with limited scope. Moreover, it was believed
that blind identification was only possible with a Gaus-
sian excitation.
In this communication, we show the advantage of for-
malising the issue in the discrete-time domain. By as-
suming a classical ARMA model for the system impulse
response, we end up with a set of equations which are
similar to the well-known Normal or Yule-Walker Equa-
tions. The only difference is that it involves first-order

conditional statistics instead of second-order statistics.
These equations may be solved for the AR coefficients
with any of the current very efficient ad hoc algorithms.
Next, we show that solving for the MA coefficients leads
to a non-linear set of equations which may be difficult
to handle in practice. Therefore, we derive a closed-
form solution which applies when more than two output
observations are available.

2 THE DISCRETE RANDOM DECREMENT

The principle of the continuous-time Random Decre-
ment technique is fully detailed for instance in refer-
ences [1], [2], [3], [4]. We shall directly introduce it here
in the discrete-time context. Let {Y ([n]}, n ∈ Z be a
discrete stochastic process and let CY

p be a set of con-
ditions on samples Y [n], Y [n − 1],...Y [n − p]. We shall
typically refer to CY

p as a triggering strategy - e.g. typi-
cally CY

1 = {Y [n−1]≤u≤Y [n]} for an upcrossing at level
u and time n. Now, let {ni}i≥0 = {n0 < n1 < n2 < ...}
be the positive instants (triggering points) where con-
ditions CY

p are satisfied by a specific trajectory of the
process Y [n]. The idea is to attach a signature ηi[m] =
y[ni+m] to each triggering point ni. Obviously, this de-
fines for a given i a stochastic process {ηi[m]} for which
any trajectory of Y [n] generates a realisation. Under
assumption of ergodicity of {Y [n]}, any such trajectory
could serve to form the empirical distribution of the ob-
served signatures ηi[m] with respect to i. The principle
of the construction is depicted in Fig.(1). From the the-
ory of Palm’s distributions [5], it can be demonstrated
that, for an increasing observation interval, this empir-
ical distribution converges with probability one to the
distribution of an arbitrary signature {ηi[m]} (indepen-
dently of i).
The Random Decrement is defined as the conditional
expectation:

DY [m] = E{ηi[m]} (1)

From the above discussion, it is independent of i and
it is equal with probability one to the average over all
signatures ηi[m]. Thus, a consistent estimator is simply
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Figure 1: Principle of the Random Decrement construc-
tion.

D̂Y [m] =
1
I

I−1∑
i=0

ηi[m] (2)

with I the total number of available signatures in
the measured signal. In the typical case where
CY
1 = {Y [n − 1]≤u≤Y [n]}, standard but lengthy
calculations lead to the following proposition:

Proposition 1: If Y [n] is a stationary Gaussian pro-
cess with autocorrelation function RY [m], then the Ran-
dom Decrement DY [m] tends to√

Fe

π
· RY [m − 1]− RY [m]√
(RY [0]− RY [1])

+ u · RY [m]
RY [0]

(3)

with increasing sampling frequency Fe.

Such a simple form could not be found except in
the asymptotic limit, nor for more general triggering
strategies. However it could be shown that the Ran-
dom Decrement only depends on RY [m] in general for a
Gaussian process. In the next section, it will be shown
that the explicit form of the Random Decrement is not
required in the blind identification issue.

3 IDENTIFICATION OF ARMA MODELS

Using the above notations, write {Y [n]} , n ∈ Z as the
response of an ARMA system excited by some random
stationary zero-mean excitation {X[n]}:

2q∑
i=0

aiY [n− i] =
r∑

j=0

bjX[n− j], a0 = 1, r ≤ 2q (4)

Furthermore, depending on the physical nature of Y [n],
b0 will generally be assigned a zero or a non-zero value.
Hence, let δb0 = 1 if b0 = 0 and 0 otherwise. It is easy
to verify that application of the Random Decrement to
the discrete model (4) leads to

2q∑
i=0

aiDY [m − i] =
r∑

j=0

bjDX [m − j] (5)

3.1 Identification of the poles
For a random white process {X[n]}, it is easy to show
thatDX [m] = 0 form > −δb0 ≥ 0. Therefore, Equation
(5) gives

2q∑
i=0

aiDY [m − i] = 0, m > r − δb0 (6)

The system of finite-difference Equations (6) is similar
to the so-called Prony’s Equations on the impulse re-
sponse of a system or the Yule-Walker Equations on
the autocorrelation function of a system. The only dif-
ference is that it involves first-order conditional statis-
tics instead of second-order statistics. It explicitly gives
access to the identification of the autoregressive (AR)
coefficients {ai}2q

i=0 - and subsequently to the poles of
the system - for example by using any of the very ef-
ficient algorithms dedicated to solving the Yule-Walker
Equations [6]. Note however that the matrix formed
with the DY [m − i] may not be toeplitz depending on
the choice of the triggering strategy. It is important to
realise that the technique holds true under very general
conditions, in particular whatever the triggering strat-
egy CY

p and whatever the probability distribution of the
excitation process. Finally, in the case where the exci-
tation is not exactly white but has an evanescent auto-
correlation function which dies out to zero after some
time-lag me, Equ. (6) still holds provided r is replaced
by r +me.

3.2 Identification of the zeros
3.2.1 Single-output approach
An approach similar to the previous one is hardly feasi-
ble for identifying the zeros since it leads to a non-linear
system of equations. Indeed, after equalizing the process
{Y [n]} by the estimated AR coefficients, the discrete
model becomes

Z [n] =
r∑

j=0

bjX [n − j] (7)

Let us now apply the Random Decrement to this finite-
difference equation for some given triggering strategy
CZ

p . By observing that DX [m] = 0 for m < −r − p in
addition to m > −δb0 , one gets 2r+p+1−2δb0 linearly
independent equations

DZ [m] =
r∑

j=0

bjDX [m − j] , −r−p+δb0 ≤ m ≤ r−δb0

(8)
In order to solve this system, it is customary to have
analytical expressions for the DX [m]. For example, in
the ideal case of a Gaussian excitation {X[n]} and a



simple triggering strategy CZ
0 = {Y [0] = u}, it can be

shown that

DX [m] = u · bm∑r
j=0 b2

j

, −r ≤ m ≤ 0 (9)

Obviously, Equations (8) and (9) lead to a difficult non-
linear system of equations in the unknown MA coeffi-
cients {bj}r

j=0 , a fact that is fully consistent with the
second-order statistic case.

3.2.2 Multiple-output approach
One way to turn the estimation of the MA coefficients
into a linear problem is to increase the number of mea-
surements positions. The idea follows that of reference
[7] on deterministic signals. Consider K measurements
Yk [n] , k = 1, ...,K on the system, all of them resulting
from the same excitation X [n]. After equalising by the
estimated AR coefficients, they give Zk [n] , k = 1, ...,K
and each measurement is described by a specific set of
MA coefficients {bk,j}rk

j=0. We further assume these co-
efficients are coprime (no common zeros). Application
of the Random Decrement w.r.t. some triggering strat-
egy CZc

p on an arbitrary equalised output Zc [n] gives K
different Random Decrement signatures

DZk
[m] =

rk∑
j=0

bk,jDX [m − j] , k = 1, ...,K (10)

For simplicity, say r = max(rk, k = 1, ...,K) is now the
maximum number of MA coefficients. Hence, for any
two different observations k1 and k2, one can check the
following equality1:

r∑
l=0

DZk1
[m − l] bk2,l =

r∑
l=0

r∑
j=0

bk1,jDX [m − l − j] bk2,l

=
r∑

j=0

bk1,jDZk2
[m − j] , −p+ δb0 ≤ m ≤ r (11)

So for any pair of observations k1 and k2, k1 	= k2, there
are (r + p + 1 − δb0) linearly independent equations of
the form (11). Taken over all observations, this gives
a total of (r + p − δb0 + 1)K(K − 1)/2 equations for
solving a maximum of Kr unknown MA coefficients.
Because there is a fundamental physical indeterminacy
concerning the recovery of the absolute magnitude of
the MA coefficients, it is customary to set one of the
unknown to an arbitrary value. Therefore, one should
use enough sensors so that

(r + p − δb0 + 1)
K(K − 1)
2

≥ Kr − 1 (12)

Condition (12) is satisfied as soon as K ≥ 3, whatever
the values of r, p and δ and therefore in particular if

1From Equation(8), the first equality holds true only if −r −
p + δb0 ≤ m − l ≤ r − δb0 with l = δb0 , ..., r, that is only if
−p+ δb0 ≤ m ≤ r.

X[n] has some finite memory me ≥ 0.

Proposition 2: If the Random Decrement is applied
on more than two different observations, the coprime
MA coefficients of a linear, stable and causal system
subjected to a zero-mean stationary excitation can be
uniquely recovered within a scaling factor by solving a
linear system of equations.

Finally, the zeros of the system are deduced from
the identified MA coefficients. Note that the zeros are
uniquely identified despite the scaling uncertainty which
only affects the MA coefficients. Here again, the iden-
tification applies whatever the triggering strategy and
whatever the probability distribution of the excitation.
Moreover, the excitation does not need to be white.
However, a condition for the method is that it requires
the exact (maximum) order of the MA parts of each
path to be known a priori.

4 SIMULATIONS

This section illustrates the proposed approach for iden-
tifying a simulated system with 3 eigenmodes. The
system was represented by three ARMA(6,6) filters in
parallel whose modal parameters are given in the first
columns of Tables 1 and 2 (poles were chosen to be
global and one zero of the second filter to be maxi-
mum phase). It was subjected to a local excitation
X [n] synthesised with a 65536 sample-long white Lapla-
cian sequence and the three responses Y1 [n], Y2 [n] and
Y3 [n] were measured, as illustrated in Fig.(2). Firstly,
the discrete Random Decrement DY1 [m], DY2 [m] and
DY3 [m] were estimated by applying the triggering strat-
egy CY1

1 = {Y1 [1] ≥ 0 ≥ Y1 [0]}. Equation (6) was then
used for identifying the poles of the system in conjunc-
tion with the Prony algorithm presented in reference
[6]. Secondly, based on these estimates, the observations
were equalised to give three new processes Z1 [n], Z2 [n]
and Z3 [n]. New discrete Random Decrement signatures
DZ1 [m], DZ2 [m] and DZ3 [m] were estimated by apply-
ing the triggering strategy CZ1

1 = {Z1 [1] ≥ 0 ≥ Z1 [0]}.
These were finally used to build up a 21 × 6 system of
linear equations from which the MA coefficients could be
deduced and ultimately the zeros of the system. Note
that in this particular case, the equalisation step was
indeed unnecessary since the poles were global. Exam-
ples of estimated Random Decrement signatures are dis-
played in Fig.(3).
The experiments were conducted 100 times, once with
an ideal signal to noise power ratio ρ of infinity and once
with ρ = 10. Results are reported in Table 1 and 2,
where the mean values of the estimated poles and zeros
(written in terms of normalised frequencies and damp-
ings) are displayed along with their standard deviations.
As can be seen, the estimation of the poles was excel-
lent even in the case of additive noise, and that of the
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Figure 2: System to identify.
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Figure 3: Example of estimated Random Decrement on
Y3[n] and Z3[n].

zeros as well in the noise-free case (the maximum phase
zero, i.e. with negative damping, was perfectly recog-
nised). However when some noise was present, the per-
formances deteriorated more rapidly for the zeros than
for the poles, as demonstrated by larger biases and stan-
dard deviations.

5 CONCLUSION

This paper demonstrated the advantage of reformulat-
ing the Random Decrement - mean value of a Palm’s
distribution - in the discrete-time context. Not only did
it simplify the theoretical formalism of the technique,
but it also opened the way to new results. As a matter
of fact, it was shown that the Random Decrement ap-
plied to an ARMA time series model gives rise to a sys-
tem of equations similar to the well-known Yule-Walker
Equations. The resolution of this system gives access
to the blind identification of the AR coefficients from
which the poles of the system can be deduced. Next, it
was shown that for the MA coefficients to be identified
from linear equations (including minimum and maxi-
mum phase zeros), it is necessary to increase the num-
ber of output observations to at least three. This is an

Table 1: Identification of the Poles

Frequencies (normalised)
true estim. ρ=∞ estim. ρ=10

1 .1250 .1250(±.0009) .1250(±.0009)
2 .2500 .2500(±.0009) .2500(±.0009)
3 .3050 .3050(±.0009) .3050(±.0010)

Damping (%)
1 1.27 1.29(±.03) 1.29(±.07)
2 .64 .64(±.04) .64(±.04)
3 .52 .52(±.03) .52(±.04)

Table 2: Identification of the Zeros

Frequencies (normalised)
true estim. ρ=∞ estim. ρ=10

1st measurement
1 .1914 .1914(±.0000) .1937(±.0058)
2 .2816 .2816(±.0000) .2912(±.0026)

2nd measurement
1 .2500 .2500(±.0000) .2617(±.0064)
2 .3041 .3041(±.0000) .3054(±.0039)

3rd measurement
1 .2733 .2733(±.0000) .2851(±.0065)
2 .5000 .5000(±.0000) .5000(±.0000)

Damping (%)
1 20.49 20.49(±0.00) 21.79(±1.77)
2 3.42 3.42(±0.00) 2.18(±1.37)

2nd measurement
1 17.18 17.18(±0.00) 14.87(±1.78)
2 -25.03 -25.03(±0.00) -24.06(±1.12)

3rd measurement
1 1.06 1.06(±0.00) 1.48(±1.16)
2 12.19 12.19(±0.00) 12.16(±0.12)

important theoretical result which suggests a two-stage
blind identification algorithm. The benefit of the pro-
posed approach is that it holds whatever the triggering
strategy and whatever the probability distribution of the
excitation. Simulations have supported the robustness
of the recovery of the poles and to a lesser extent that of
the zeros. However, further work is necessary to investi-
gate the statistical performance of the method for better
comparison with the other existing blind-deconvolution
techniques. In particular, the effect of additive noise on
faulty triggering decisions should be analysed in detail.
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retical and Applied Mechanics, Vol. 7, No.3, 1988, pp.269-280.

[4] R. Brincker et al., “Estimation of Correlation Functions by
the Random Decrement Technique”, Proc. 9th International
Modal Analysis Conference, Firenze, Italy, April 1991.

[5] M.R. Leadbetter, Extremes and related properties of random
sequences and processes, Holger Rootzn. 1983.

[6] S. L. Lawrence Marple, “Digital Spectral Analysis with Ap-
plications”, Prentice-Hall 1987.

[7] H. Liu, L. Tong, “A Deterministic Approach to Blind Identifi-
cation of Multi-Channel FIR Systems”, International Confer-
ence on Acoustic, Speech and Signal Processing, Singapour,
1994, pp.581-585.


