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ABSTRACT

This paper presents an eÆcient thresholding technique
for wavelet speech enhancement. The signal-bias com-
pensated noise level is used as the threshold parameter.
The noise as well as signal level is estimated from the
detail wavelet packet (WP ) coeÆcients in the �rst scale.
Both hard and soft thresholding are applied successively.
The regions for hard thresholding are identi�ed by esti-
mating their signal to noise ratio (SNR) in the wavelet
domain. Soft thresholding is applied to the rest of the
regions. The performance of the proposed scheme is
evaluated on speech recorded in real conditions with ar-
ti�cial noise added to it.

1 INTRODUCTION

Speech enhancement plays a key role in designing robust
automatic speech and speaker recognition systems. As
the presence of noise in a speech deteriorates the per-
formance of the recognition systems, several approaches
for speech enhancement in additive noise have been pro-
posed [1]-[5]. The spectral subtraction based approaches
have been studied by many researchers for the enhance-
ment of speech degraded by additive uncorrelated white
noise [2], [3]. The basic idea is to restore the magni-
tude spectrum or power spectrum of a signal observed
in additive noise through subtraction of an estimate of
the average noise spectrum from the noisy signal spec-
trum. The advantage of the spectral subtraction method
is its simplicity. However, the main problem in spectral
subtraction is the processing distortions caused by the
random variations of the noise spectrum and the use
of noisy phase. Methods for speech enhancement have
also been developed based on extraction of parameters
from noisy speech, and synthesizing speech from these
parameters [1], [5].
Wavelet transform has recently been evolved as a pow-

erful tool for removing noise from speech and image sig-
nal. Bahoura and Rouat [6] have recently proposed a
wavelet speech enhancement technique using the teager
energy operator. The main idea was to de�ne a dis-
criminative threshold in various scales as a function of
speech components. Setting of a threshold criterion re-

quires an accurate estimate/knowledge of the additive
noise level in the noisy speech. The higher frequency
region of the wavelet coeÆcients mostly contains noise
from which noise level is usually estimated [7]. The ef-
fect of the signal components present in this region may
be insigni�cant at low SNR but is not negligible partic-
ularly at high SNR. For this reason, this method shows
deteriorating performance at a relatively high SNR. As
for example, a signal having SNR of 20 dB deteriorated
to an SNR of 16:47 dB as shown in Table I of [6].
In this research, we propose an eÆcient wavelet

speech enhancement method applying both hard and
soft thresholding successively. Regions in wavelet do-
main, where average signal strength is less than that of
noise, hard thresholding is applied by forcing the WP
coeÆcients to be zero. For the rest of the regions a
modi�ed soft thresholding criterion is introduced to fur-
ther reduce the noise level. Unlike other conventional
techniques, we incorporate the e�ect of the trace of
the signal remaining at the high frequency region of
the wavelet packet (WP ) coeÆcients of the degraded
speech. A method for estimating this signal level is ad-
dressed. Using the estimated signal level in the detail
WP coeÆcients, the bias compensated noise level is ob-
tained from the median absolute deviation (MAD) of
the detail coeÆcients of the degraded speech. The value
thus obtained is used as the threshold parameter.

2 THEORY

In general, the measurements of a clean speech signal
s(n) are corrupted by noise. Usually, the noise v(n)
is modeled as an additive white Gaussian process with
zero-mean and variance �2v . The noisy speech signal
x(n) is then given by

x(n) = s(n) + v(n); n = 1; 2; � � � ; N (1)

The objective of this research is to extract the speech
signal s(n) from the degraded observed signal x(n) by
applying new thresholding techniques in the wavelet do-
main.
For a given level j, the wavelet packet (WP ) trans-

form decomposes the noisy signal x(n) into 2j subbands
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Figure 1: Variation of �v+ with SNR

corresponding to wavelet coeÆcients sets Xj
k;m as given

by [9]
Xj
k;m =WPfx(n); jg (2)

In other words, Xj
k;m represents the mth coeÆcient

of the kth subband, where m = 1; 2; � � � ; N=2j and
k = 1; 2; � � � ; 2j . For this application, WP decomposes
the given signal at level 4 over which the proposed
method is applied. But in estimating the noise level,
WP transform of the degraded speech signal at the �rst
scale is used.
Donoho and Johnstone [7] proposed the noise level as

the median absolute deviation (MAD) of the wavelet
coeÆcients at the �nest level divided by 0.6745, i.e.,

�v+ =MAD=0:6745 (3)

Usually, the coeÆcients at the �nest level are predomi-
nantly noise. Because of the presence of a small fraction
of signal coeÆcients we get an estimate of noise that suf-
fers an upward bias [7]. To signify this fact the subscript
\v+" is used instead of just \v" in (3).
Fig. 1 shows the variation of �v+ with SNR for a

given speech degraded by noise of di�erent power. It
is interesting to observe that �v+ shows asymptotically
at behaviour for higher values of SNR. This indicates
that the detail coeÆcient region contains signal whose
MAD corresponds to the asymptotic value. Applying
�v+ as a threshold parameter removes some of the signal
components which have signi�cant adverse e�ect at high
SNR values.
At a high SNR, all existing methods concerning de-

noising of the speech signal encounter a strong draw-
back of SNR reduction of the denoised speech. . As for
example, as shown in Table 1 of [6] the SNR of the en-
hanced speech is found to be 14:47 and 16:47 dB while
the original SNR of the noisy speech was 15 and 20 dB,
respectively. This is due to the undesired inclusion of
signal components in �v+ . This justi�es our observa-
tion on the behaviour of �v+ depicted in Fig. 1 and
suggests that introduction of a correction factor in �v+
is necessary to make the threshold value more e�ective.

2.1 Calculation of corrected value of noise level

Unlike other approaches [6], [8], the noise level used as
the threshold parameter is estimated taking into account
the signal remaining at the �nest level. For Gaussian
distribution of a noise sequence, the noise level is cor-
rectly de�ned as the MAD of the wavelet coeÆcients
at the �nest level divided by 0.6745 as de�ned in (3).
It has been observed that when two noise sequences are
added together, the MAD of the resultant sequence at
the �nest level varies as the square root of the sum of
their individual (MAD at the �nest level) squared val-
ues. This is true for random noise sequences only.
The distribution of signal coeÆcients remaining at the

�nest level di�ers from that of the random noise. Hence,
the addition of noise to the signal makes the MAD at
the �nest level to deviate from its behaviour when a
random noise sequence is added to another random noise
sequence. This deviation can be used as an approximate
measure of the signal remaining at the �nest level.
Initially �v+(0) is calculated from the noisy data se-

quence. To obtain a better estimate of the actual noise
level, we generate m sets of known noise sequences and
add them in succession to the given noisy speech, where
m is a convenient value (m = 20 is a good value).
Then �v+(i) is calculated at each step. We calcu-
late another noise parameter, �v(i), assuming �v+(0)
to be the initial noise level, using the following relation
�2v(i) = �2

v+
(0) + �2add(i), where �2add(i) is the added

noise power at i-th step. The deviation which is as-
sumed to be an approximate measure of the signal level
(�̂s) at the �nest region is then computed as

�̂s =

rPm

i=1[�v+(i)]
2 �
Pm

i=1[�v(i)]
2

m
(4)

Once �̂s is obtained, the correction of noise level given
in (3) is made as

�vc =
p
�v+(0)2 � �̂2s (5)

where �vc denotes the corrected value of �v+(0).

2.2 Thresholding WP coeÆcients

In this paper, we simultaneously apply both hard
and soft thresholding to devise an improved denoising
method. Regions in wavelet domain, where average sig-
nal strength is less than that of noise, hard thresholding
is applied by forcing the coeÆcients to be zero. Af-
ter accomplishing hard thresholding, soft thresholding
is applied over the rest of the regions to further reduce
the noise level. Details of the thresholding techniques
are described in the following.

2.2.1 Application of hard thresholding

The wavelet packet coeÆcients at a particular level is
�rst divided into a number of blocks consisting of con-
venient number of consecutive WP coeÆcients. Then



Table 1: Comparison of actual and estimated values of
the signal level (�̂s) in detailWP coeÆcients at the �rst
level for S2 (refer to the result section). The values of
�v+ and �vc are also presented.

SNR Actual Estimated �v+ �vc
signal level �̂s

�10 0.0090 0.0436 0.2994 0.2962
�5 0.0090 0.0326 0.1708 0.1677
0 0.0090 0.0182 0.0979 0.0962
5 0.0090 0.0143 0.0575 0.0557
10 0.0090 0.0128 0.0354 0.0330
15 0.0090 0.0121 0.0229 0.0194
20 0.0090 0.0118 0.0159 0.0107
25 0.0090 0.0114 0.0123 0.0046
30 0.0090 0.0109 0.0115 0.0036

hard thresholding is applied to a block of WP coeÆ-
cients where average signal power is less than the av-
erage noise power as that block essentially contributes
more noise than signal in the denoised speech. To iden-
tify the blocks for hard thresholding, a window of con-
venient length is slided over the whole range. The hard
thresholding used in this paper is de�ned as

�Xj

k;w =

�
Xj

k;w; if Pw
x � 2Pw

v

0; if Pw
x < 2Pw

v

(6)

where w = m to m+ l� 1, l is the length of the window
and Pw

x (= Pw
s + Pw

v ) represents the total power of the
WP coeÆcients inside a given window and Pw

v denotes
the power of the noise component over the same win-
dow. An estimated value of Pw

v can be obtained using
the relation Pw

v = l�vc
2 and Pw

x can be estimated sim-
ply by taking the sum of the squared value of the WP
coeÆcients for that given window.

2.2.2 Application of soft thresholding

The hard thresholding described in the preceding sec-
tion eliminates a signi�cant portion of noise from the
regions of wavelet coeÆcients where noise dominates sig-
nal. The rest of the regions where signal strength is
higher than that of noise, soft thresholding is applied
for further enhancement of the noisy signal. As the
noise power uniformly penetrates into the actual signal
in wavelet domain, subtraction of noise power from the
signal power is expected to improve the SNR of the en-
hanced signal. The coeÆcients with power less than the
average noise power are more susceptible to distortion;
their amplitudes are reduced proportionately and the
soft thresholding (T1) applied in this paper is de�ned
as

~Xj
k;m =

(
sign( �Xj

k;m)
p
j( �Xj

k;m)2 � �2vcj; if j �Xj

k;mj � �vc
�X
j

k;m
j �X

j

k;m
j

�vc
; if j �Xj

k;mj < �vc

(7)

It may be mentioned here that the amplitude subtrac-
tion based soft thresholding (T2) technique is de�ned as
[8], [9]

~Xj
k;m =

(
sign( �Xj

k;m)(j
�Xj
k;mj � �vc); if j �Xj

k;mj � �vc
0; if j �Xj

k;mj < �vc

(8)
A comparison of the performance of the two soft thresh-
olding techniques de�ned by (7) and (8) is presented in
Table 2.

2.3 Reconstruction of the original signal

The enhanced signal is synthesized with the inverse
transformation WP�1 of the modi�ed wavelet packet
coeÆcients ( ~Xj

k;m) [9], i.e.,

bs(n) =WP�1( ~Xj
k;m; j): (9)

3 RESULTS

Two clean speeches, namely, \Should we chase those
cowboys?" termed as S1 and \She had your dark suit
in greasy wash water all year" termed as S2 from the
TIMIT database are used in the simulation for compar-
ing the proposed method with the one described in [6].
The speech signals are sampled at 8 kHz. This generates
a total of 21248 samples for S1 and 22221 for S2. Then
computer generated white noise sequences are added to
the clean speech signals for obtaining di�erent SNRs.
Instead of segmenting the given sequence of the speech
signal,WP transform (at level 4) is applied over the full
range of the data samples.
First, we estimate the SNR of the given signal from

the detail coeÆcients in the �rst scale. Then the cor-
rected value of �v+ , i.e., �vc, is calculated from the de-
tail coeÆcients of the noisy speech by adding auxiliary
white noise sequences such that it results an incremental
SNR of �0:5 dB. 20 such points are taken to calculate
�̂s. Estimated results of the signal level �̂s in the detail
WP coeÆcients at the �rst scale for di�erent SNRs are
presented in Table 1 along with �v+ and �vc. It can
be seen that the estimated value of �̂s is fairly close to
the actual one. Since �vc determines the threshold level
for the noisy WP coeÆcients, an over-estimation of �vc
would have an adverse e�ect on the denoised speech. In
particular, Table 1 shows that the biased noise level �v+
is signi�cantly higher than the proposed corrected noise
level �vc at a relatively high SNR.
The clean samples of each of the speech signal are cor-

rupted by additive white noise for various SNRs rang-
ing from �10 to 30 dB. The noisy speech signals are
then denoised using the proposed technique. For hard
thresholding, a window size of 40 samples is chosen and
is slided over the whole WP coeÆcients at level 4 of the
given signal. Application of hard thresholding in the
�rst stage eliminates the predominantly noisy portions
in wavelet coeÆcients domain. The soft thresholding is



Table 2: Results on SNR improvement for real speech
(S1 and S2)

SNR WP Proposed WP Proposed WP

(dB) Ref. [6], dB with T2, dB with T1, dB
S1 S2 S1 S2 S1 S2

�10 �1.28 �1.65 2.15 1.63 1.75 1.37
�5 2.35 1.57 4.54 3.95 4.52 3.85
0 6.01 5.30 7.59 6.64 8.15 6.82
5 9.65 8.91 10.13 9.58 10.78 10.04
10 13.15 12.16 13.71 12.49 14.59 13.34
15 15.99 13.93 17.67 15.92 18.51 17.01
20 18.15 16.05 21.25 20.03 22.37 21.39
25 20.16 17.81 25.88 25.45 26.77 25.63
30 22.06 18.89 28.49 26.89 30.14 29.89

then applied to further enhance the signal quality. The
average results of 25 independent runs for each SNR are
shown in Table 2. For comparison, the results obtained
using a recent method described in [6] are also included
in the table. It is evident that the proposed method
gives better results than the previous one for all SNRs.
However, the results show that the power subtraction
based thresholding (T1) performs better than the ampli-
tude subtraction based thresholding (T2). Also notice
that the proposed method with T1 prevents the unde-
sired fall of SNR of the denoised speech even when the
original signal has a high SNR of 30 dB.

Fig. 2 shows the degraded speech x(n) for SNR =
0 dB and the corresponding enhanced speech resulting
from the wavelet packet method described in [6] and the
denoising method proposed in this paper. The noise-
free speech s(n) is also plotted along with the enhanced
speeches for comparison. It is apparent from Fig. 2 that
the proposed method eliminates noise in a better way
from both the speech-absent and speech-present regions.

4 CONCLUSION

A method for reducing upward bias in the threshold pa-
rameter using MAD of WP coeÆcients for speech en-
hancement has been investigated. New hard and soft
thresholding strategies for WP coeÆcients have also
been proposed using the corrected thresholding param-
eter de�ned in this paper. For both very strong and
low noise levels, the proposed method shows signi�cant
improvement in SNR than the very recent results re-
ported in [6]. In practice, the SNR level of any observed
signal is unknown. The noise and signal power esti-
mation scheme proposed here can be used for estimat-
ing the SNR value for further processing of the noisy
speech signal. The results of this paper may be used as
a preprocessor for designing robust speech and speaker
recognition systems.
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