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ABSTRACT 

In this paper we propose a synergy of processing on parallel 
processor arrays (systolic or SIMD) and multithreading, 
termed multithreaded systolic computation.  
The multithreaded systolic computation principle is 
demonstrated on a programmable systolic array executing a 
set of linear algebra algorithms. We demonstrate that 
multithreaded systolic computation can provide throughput 
improvements that asymptotically approach the number of 
simultaneously executable threads. 
Keywords: multithreading, homogeneous processor array, 
systolic array, systolic algorithm, linear algebra. 

1. INTRODUCTION 

DSP, image processing as well as linear algebra algorithms 
have found an efficient implementation medium in parallel 
computing domain. These algorithms can be efficiently 
mapped onto array processors (systolic arrays, wavefront 
arrays and SIMD arrays), due to their regularity on data level 
[1, 2]. Systolic arrays were designed to tackle fine-grained 
computation and exploit data level parallelism of these 
problems directly. They feature a very homogeneous (regular) 
design and consist of a number of identical processing 
elements. 
Our paper is focused on systolic arrays with programmable 
processing elements. The model of a programmable 
processing element is the central point of the simultaneous, 
concurrent execution of several algorithms on one systolic 
array. In order to achieve consistent speedups with 
programmable and pipelined processing elements we execute 
multiple algorithms simultaneously on a systolic array, 
termed multithreaded systolic computation [3].  
Multithreading is a technique for hiding various types of 
latencies and is used in contemporary operating systems, Java 
programs, etc. It is seen as the technique that can substantially 
push forward the throughput of 21st century single processors 
[4]. The term thread refers to a single path of execution or 
control flow. There are several flavours of multithreading, 
which differ by thread switching intervals, synchronization 
mechanisms among threads and implementation 
requirements. On the finer granularity level of processor 
clock cycles, multithreading can hide the latencies of jump 
and branch or even long latency instructions as division or 

square root. This kind of implementation is covered in our 
contribution. 

2. THROUGHPUT LIMITATIONS OF SYSTOLIC 
ALGORITHMS 

Systolic computation combines parallel processing and 
pipelining. Parallel processing is the result of parallel 
operation of all processing elements within a systolic array 
that co-operate in order to solve the problem faster. Pipelining 
is done on the level of the processing elements within the 
systolic array structure.  
Each systolic algorithm viewed from the processing element 
perspective includes three distinct processing phases: data 
input, algorithm processing, data output. All three phases 
constitute what is known as a systolic cycle. The systolic 
cycle is defined by a global clock, which synchronises data 
exchange between the processing elements within the systolic 
array.  
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Figure 1: Systolic processing phases within a 

processing element during systolic cycle. I: input, P: 
processing, O: output. 

Throughput of a systolic array can be limited due to various 
reasons: low systolic algorithm efficiency, data 
synchronization between parts of the systolic array with 
different types of processing elements [1-3], data 
dependencies and long latency operations within a processing 
element. The systolic array efficiency and systolic cycle 
length depend on the complexity of the processing element 
algorithm and the underlying implementation of processing 
elements. Both bound the systolic array throughput. 
Many algorithm post-transformations can be applied to 
systolic solutions in order to: enhance their effectiveness, 
lower the number of required processing elements, increase 
the efficiency, shorten the processing time or increase the 
throughput. Well known systolic array transformation 
techniques are: c-slowing, folding, double pipelining, fast 
designs and two-level pipelining [1].  



In order to achieve further throughput enhancements, a 
detailed look within a processing element on the level of the 
processing element clock cycle is necessary.  

2.1.  Latencies within systolic arrays 

Lower than 100% efficiency. Data flows between processing 
elements are spaced with dummy values in order to satisfy the 
requirement for proper data synchronization within a systolic 
array. Efficiency enhancing techniques outlined above can be 
used to deal with this problem.  
Synchronization problems. There is a number of systolic 
algorithms where the systolic array is composed of sub-arrays 
with different types of processing elements. Each sub-array of 
such systolic array receives its own instruction sequence. 
Instruction streams must be synchronized. 
Data dependencies. Traditionally, non-pipelined functional 
units were preferred as a building block within a processing 
element, thus eliminating data hazards. Non-pipelined 
functional units also exhibit lower latencies in terms of clock 
cycles and can execute recursions more effectively. With 
higher clock rates pipelined functional units are preferred, but 
then we have to cope with data dependency problems.  
Long latency of operation with pipelined functional unit.. 
Simple arithmetic operations (multiply, add, subtract, 
multiply/accumulate) can be efficiently pipelined. After the 
initial latency period and if there are enough independent 
operands to be consecutively supplied to a functional unit, its 
throughput becomes one datum per a clock cycle. Multiple 
threads can successfully fill the pipelines of these functional 
units, if clever instruction scheduling is performed. 
Long latency operations with non-pipelined functional unit. 
Several arithmetic operations can not be efficiently pipelined 
(at least not with low real estate requirements) as for example 
division, square root computation, etc. More threads of the 
same algorithm do provide more independent instructions, but 
they are serially executed due to the resource constraints. 

3. MULTITHREADED SYSTOLIC COMPUTATION 

In the proposed approach, multiple independent algorithm 
threads (i.e. instances of the same algorithm) are interleaved 
within a given systolic cycle on the same systolic array. Data 
from multiple threads are pumped through the systolic array 
in blocks resulting in a dramatic improvement of the net 
throughput. All threads share the same resources of the 
systolic array.  
We propose employment of pipelined functional units 
together with a sophisticated compiler/scheduler framework. 
Multithreading keeps execution pipelines within the 
processing element full and thus increases the efficiency of 
functional units. The proposed programmable processing 
element can exploit simultaneous multithreading of multiple 
algorithm instances within one systolic cycle. 

Each thread can belong to a different systolic algorithm or be 
another instance of the same systolic algorithm. All threads 
share the processing element’s resources including, the inter-
processing element communication data paths. The end result 
is a shortened algorithm-processing phase achieved by 
running concurrently interleaved multiple independent 
algorithm threads on processor arrays.  Performance increase 
is due to the elimination of true data hazards within each 
algorithm, better functional unit utilisation and larger 
amounts of usable instruction level parallelism (ILP). Basic 
block length describing the algorithm within the processing 
element is lengthened, thus creating more ILP. Functional 
unit pipelines within processing elements are kept busy by 
interleaving independent threads running simultaneously 
through the systolic array. Efficiency of the whole systolic 
array improves, since many algorithms can finish execution in 
shorter time than they would when executed serially on the 
same systolic array. 

3.1. Sources of threads within systolic arrays 
For multithreaded systolic computation to thrive it is 
necessary to present multiple threads to the systolic array. 
There are several sources of data sets that can be treated as 
unrelated threads: 
Data vectors from different partitions. When problems are too 
big to be fitted directly to a given systolic array, problem 
partitioning is used to handle processing of sub parts 
sequentially on systolic array [1].  
Loop unrolled systolic cell algorithm. Viewing the execution 
from the systolic controller’s point of view, we can see that 
processing element computation is executed repetitively in a 
loop. In each systolic cycle blocks of data, corresponding to 
unrolled loop instances, are transferred between processing 
elements.  
Multiple instances of the same algorithm. There are some 
applications that require running the same algorithm several 
times with different data sources (e.g. channel processing in 
mobile base stations or xDSL systems). Here different 
instances of the same algorithm use different filter 
coefficients and thus have no common points.  
Simultaneous execution of different types of algorithms. The 
goal of processing different types of algorithms 
simultaneously is to utilize vacant functional units available 
within processing elements.  
Suitable combinations of the above. For example, one 
algorithm can be unrolled and combined with a more complex 
counterpart. 

3.2. Model of multithreaded systolic computation 
We can examine the multithreaded systolic computation on a 
logical level where all threads are concurrently executing on 
the systolic array with the granularity of one processing 
element clock cycle. Implementation of multithreaded 
programs uses a packet data transfer approach: For each 



iteration of the systolic program M data elements, one from 
each of the threads are input, processed and output. A 
graphical representation of I/O activities within a 
multithreaded systolic array is shown in Figure 2. Data 
elements of input data vectors of M threads are time 
multiplexed into a multithreaded systolic array at a rate of one 
element per processing element clock cycle. Data elements of 
result vectors are output at the same rate. The process repeats 
for all subsequent elements and all threads.  

Figure 2: Logical representation of multithreaded 
systolic computation. Switch rate = 1/PE clock cycle. 

Since all functional units within processing elements are 
pipelined, data are pumped at the pipeline rate of these 
functional units, compared to the systolic cycle rate in 
traditional systolic arrays (Figure 1). For each iteration, 
multiple unrelated data samples from all threads are input, 
processed and output within one systolic cycle (Figure 3).  

 
Figure 3: Multithreaded systolic processing phases 

within a processing element. 
Next we identify three function blocks that could limit the 
performance increase of multithreaded systolic computation: 

Inter processing element communication channels. We 
can expect at some point no increase in the systolic array 
throughput if bisection bandwidth of the systolic array 
remains constant.  
Register file. Enough operand storage must be provided 
within each processing element to handle the increased 
number of data elements from multiple threads.  
Delay elements. Delay elements are situated on 
communications channels and these delays can be 

implemented within the register file or local memory. The 
number of delay elements required in multithreaded 
processing element is the sum of all delays specified for 
each thread.  

4. SIMULATION RESULTS 

4.1. Algorithm selection 
A basic core of mathematical algorithms arising in problems 
of modern multimedia and image processing consists of linear 
algebra and linear operator theory. We focus on systolic 
algorithms for two well-known linear algebra algorithms, 
namely Gaussian elimination and Givens rotations [1]. 
Gaussian elimination is a standard method for solving linear 
systems of equations and is one of the most widely used 
algorithms for LU decomposition of matrices [5]. Givens 
rotations are usually considered as a method for QR 
decomposition of matrices [5]. More generally, Givens 
rotations can be used for QR decomposition as well as for 
orthogonal triangularisation.  

4.2. Simulation environment 
The simulation is focused on the execution of computations 
within each processing element of the systolic array. We 
functionally simulate multithreaded systolic computation 
operation as it is executed on a processing element employing 
a parameterised very long instruction word (VLIW) processor 
simulator.  

Number of functional units by 
Type (T) / Latency (L) 

Add Mul Div/Sqrt 

PE 
model 
name 

PE 
operation 

issue  
width 

T L T L T L 
A 5 2 3 2 3 1 17 
B 8 2 5 2 5 2 17 
C 8 4 5 4 5 4 17 

Table 1: Description of processing element models used in 
the simulations. 

Three different models of the processing element are treated 
in this paper (Table 1). All computational functional units 
within the three models are pipelined into 5 stages, except for 
divide/square root units that have 17 processing element 
clock cycle latency. The number of memory and inter 
processing element communication functional units is fixed at 
two for the model A and at eight units for the models B and C 
respectively and are two stage pipelined. Operation issue 
width describes the maximum number of operations 
simultaneously executable within the processing element. 
There are no restrictions on the type of operations that can 
proceed concurrently, as long as there are no data or structural 
hazards. 

4.3. Simulation results 
The results present speedups achievable on a multithreaded 
systolic array running the selected algorithms on the 
presented processing element architectures. Speedups are 
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based on the execution time ratios of multithreaded systolic 
computation vs. single threaded systolic computing. 

Figure 4: Multithreaded systolic computation of 
Givens rotations. Speedup.  

Figure 5: Multithreaded systolic computation of 
Gaussian elimination. Speedup.  

The speedups defined reflect the true processing element 
clock cycle-by-cycle situation within the processing element 
and as such they also reflect the net throughput of each 
processing element. Our definition does not take into account 
the second level effects as data load/store to/from systolic 
array.  
We can define the speedup SMTH of multithreaded program 
running one type of algorithm versus single threaded program 
running the same type of algorithm as 

 

program dedmultithrea of timeExecution 
program  threadedsingle a of timeExecution MSMTH

⋅=  

where M equals to number of threads. Both algorithm 
versions have to perform an equal job and the equalisation 
constant is M. Speedup is calculated for the same processing 
element model running a different number of threads.  
From Figure 4 we can observe that the speedup curve flattens 
already with two threads, since the algorithm contains long 
latency arithmetic operations, non-pipelineable operations 
and insufficient number of resources available within a given 
processing element. A similar observation applies to Figure 5, 

although higher speedups are achieved, since the long latency 
operation count is smaller for this algorithm. When multiple 
long latency functional units are available, than the speedup 
continues to increase.  
Multithreaded systolic computation creates the following 
effects: 

PE utilization is increased. This is due to the fact that 
there are many independent operations available and these 
can be executed concurrently. 
As a direct consequence of multithreading the net 
throughput increases. As long as there are enough 
pipelined functional units and inter processing element 
communication channels, the speedup curve can 
experience a proportional increase.  
Basic blocks of the code executed on processing elements 
become longer, which results in the opportunity for the 
extraction of more ILP.  
Register requirements increase proportionally to the 
number of threads. 

5. CONCLUSIONS 

Multithreaded systolic computation results in higher systolic 
array's throughput, due to improved utilization of pipelined 
functional units within processing elements.  
A linear increase in the throughput is observed as long as the 
processing element functional units are pipelined and the 
algorithms do not experience very low computation-to-
communication ratios. In the case of linear algebra algorithms 
that require the computation of lengthy square root and 
division operations that can not be pipelined, multithreading 
can not provide any significant benefit unless multiple 
functional units are employed. Classical DSP algorithms 
require only multiply-accumulate type of operations and as 
such they can experience even better speedup results. 
Programmability of individual processors of the systolic array 
is a key to the straightforward implementation of various 
algorithms with a multithreaded systolic computation 
concept. Multithreaded systolic computation provides 
speedups that asymptotically approach the number of threads 
executed simultaneously on the systolic array. The ideas 
outlined in the paper are equally well applicable to systolic 
and SIMD arrays alike.  
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