
MULTITHREADED SYSTOLIC COMPUTATION

Radovan Sernec, Matej Zajc, Jurij Tasič

Faculty of Electrical Engineering, University of Ljubljana
Tržaška 25, SI-1000 Ljubljana, Slovenia
zajcm@fe.uni-lj.si, http://ldos.fe.uni-lj.si/

ABSTRACT

In this paper we propose a synergy of processing on parallel
processor arrays (systolic or SIMD) and multithreading,
termed multithreaded systolic computation.
The multithreaded systolic computation principle is
demonstrated on a programmable systolic array executing a
set of linear algebra algorithms. We demonstrate that
multithreaded systolic computation can provide throughput
improvements that asymptotically approach the number of
simultaneously executable threads.
Keywords: multithreading, homogeneous processor array,
systolic array, systolic algorithm, linear algebra.

1. INTRODUCTION

DSP, image processing as well as linear algebra algorithms
have found an efficient implementation medium in parallel
computing domain. These algorithms can be efficiently
mapped onto array processors (systolic arrays, wavefront
arrays and SIMD arrays), due to their regularity on data level
[1, 2]. Systolic arrays were designed to tackle fine-grained
computation and exploit data level parallelism of these
problems directly. They feature a very homogeneous (regular)
design and consist of a number of identical processing
elements.
Our paper is focused on systolic arrays with programmable
processing elements. The model of a programmable
processing element is the central point of the simultaneous,
concurrent execution of several algorithms on one systolic
array. In order to achieve consistent speedups with
programmable and pipelined processing elements we execute
multiple algorithms simultaneously on a systolic array,
termed multithreaded systolic computation [3].
Multithreading is a technique for hiding various types of
latencies and is used in contemporary operating systems, Java
programs, etc. It is seen as the technique that can substantially
push forward the throughput of 21st century single processors
[4]. The term thread refers to a single path of execution or
control flow. There are several flavours of multithreading,
which differ by thread switching intervals, synchronization
mechanisms among threads and implementation
requirements. On the finer granularity level of processor
clock cycles, multithreading can hide the latencies of jump
and branch or even long latency instructions as division or

square root. This kind of implementation is covered in our
contribution.

2. THROUGHPUT LIMITATIONS OF SYSTOLIC
ALGORITHMS

Systolic computation combines parallel processing and
pipelining. Parallel processing is the result of parallel
operation of all processing elements within a systolic array
that co-operate in order to solve the problem faster. Pipelining
is done on the level of the processing elements within the
systolic array structure.
Each systolic algorithm viewed from the processing element
perspective includes three distinct processing phases: data
input, algorithm processing, data output. All three phases
constitute what is known as a systolic cycle. The systolic
cycle is defined by a global clock, which synchronises data
exchange between the processing elements within the systolic
array.

Systolic cycle

I #1 P#1 O #1
Sample #1

Sample #2
I #2

Figure 1: Systolic processing phases within a

processing element during systolic cycle. I: input, P:
processing, O: output.

Throughput of a systolic array can be limited due to various
reasons: low systolic algorithm efficiency, data
synchronization between parts of the systolic array with
different types of processing elements [1-3], data
dependencies and long latency operations within a processing
element. The systolic array efficiency and systolic cycle
length depend on the complexity of the processing element
algorithm and the underlying implementation of processing
elements. Both bound the systolic array throughput.
Many algorithm post-transformations can be applied to
systolic solutions in order to: enhance their effectiveness,
lower the number of required processing elements, increase
the efficiency, shorten the processing time or increase the
throughput. Well known systolic array transformation
techniques are: c-slowing, folding, double pipelining, fast
designs and two-level pipelining [1].

In order to achieve further throughput enhancements, a
detailed look within a processing element on the level of the
processing element clock cycle is necessary.

2.1. Latencies within systolic arrays

Lower than 100% efficiency. Data flows between processing
elements are spaced with dummy values in order to satisfy the
requirement for proper data synchronization within a systolic
array. Efficiency enhancing techniques outlined above can be
used to deal with this problem.
Synchronization problems. There is a number of systolic
algorithms where the systolic array is composed of sub-arrays
with different types of processing elements. Each sub-array of
such systolic array receives its own instruction sequence.
Instruction streams must be synchronized.
Data dependencies. Traditionally, non-pipelined functional
units were preferred as a building block within a processing
element, thus eliminating data hazards. Non-pipelined
functional units also exhibit lower latencies in terms of clock
cycles and can execute recursions more effectively. With
higher clock rates pipelined functional units are preferred, but
then we have to cope with data dependency problems.
Long latency of operation with pipelined functional unit..
Simple arithmetic operations (multiply, add, subtract,
multiply/accumulate) can be efficiently pipelined. After the
initial latency period and if there are enough independent
operands to be consecutively supplied to a functional unit, its
throughput becomes one datum per a clock cycle. Multiple
threads can successfully fill the pipelines of these functional
units, if clever instruction scheduling is performed.
Long latency operations with non-pipelined functional unit.
Several arithmetic operations can not be efficiently pipelined
(at least not with low real estate requirements) as for example
division, square root computation, etc. More threads of the
same algorithm do provide more independent instructions, but
they are serially executed due to the resource constraints.

3. MULTITHREADED SYSTOLIC COMPUTATION

In the proposed approach, multiple independent algorithm
threads (i.e. instances of the same algorithm) are interleaved
within a given systolic cycle on the same systolic array. Data
from multiple threads are pumped through the systolic array
in blocks resulting in a dramatic improvement of the net
throughput. All threads share the same resources of the
systolic array.
We propose employment of pipelined functional units
together with a sophisticated compiler/scheduler framework.
Multithreading keeps execution pipelines within the
processing element full and thus increases the efficiency of
functional units. The proposed programmable processing
element can exploit simultaneous multithreading of multiple
algorithm instances within one systolic cycle.

Each thread can belong to a different systolic algorithm or be
another instance of the same systolic algorithm. All threads
share the processing element’s resources including, the inter-
processing element communication data paths. The end result
is a shortened algorithm-processing phase achieved by
running concurrently interleaved multiple independent
algorithm threads on processor arrays. Performance increase
is due to the elimination of true data hazards within each
algorithm, better functional unit utilisation and larger
amounts of usable instruction level parallelism (ILP). Basic
block length describing the algorithm within the processing
element is lengthened, thus creating more ILP. Functional
unit pipelines within processing elements are kept busy by
interleaving independent threads running simultaneously
through the systolic array. Efficiency of the whole systolic
array improves, since many algorithms can finish execution in
shorter time than they would when executed serially on the
same systolic array.

3.1. Sources of threads within systolic arrays
For multithreaded systolic computation to thrive it is
necessary to present multiple threads to the systolic array.
There are several sources of data sets that can be treated as
unrelated threads:
Data vectors from different partitions. When problems are too
big to be fitted directly to a given systolic array, problem
partitioning is used to handle processing of sub parts
sequentially on systolic array [1].
Loop unrolled systolic cell algorithm. Viewing the execution
from the systolic controller’s point of view, we can see that
processing element computation is executed repetitively in a
loop. In each systolic cycle blocks of data, corresponding to
unrolled loop instances, are transferred between processing
elements.
Multiple instances of the same algorithm. There are some
applications that require running the same algorithm several
times with different data sources (e.g. channel processing in
mobile base stations or xDSL systems). Here different
instances of the same algorithm use different filter
coefficients and thus have no common points.
Simultaneous execution of different types of algorithms. The
goal of processing different types of algorithms
simultaneously is to utilize vacant functional units available
within processing elements.
Suitable combinations of the above. For example, one
algorithm can be unrolled and combined with a more complex
counterpart.

3.2. Model of multithreaded systolic computation
We can examine the multithreaded systolic computation on a
logical level where all threads are concurrently executing on
the systolic array with the granularity of one processing
element clock cycle. Implementation of multithreaded
programs uses a packet data transfer approach: For each

iteration of the systolic program M data elements, one from
each of the threads are input, processed and output. A
graphical representation of I/O activities within a
multithreaded systolic array is shown in Figure 2. Data
elements of input data vectors of M threads are time
multiplexed into a multithreaded systolic array at a rate of one
element per processing element clock cycle. Data elements of
result vectors are output at the same rate. The process repeats
for all subsequent elements and all threads.

Figure 2: Logical representation of multithreaded
systolic computation. Switch rate = 1/PE clock cycle.

Since all functional units within processing elements are
pipelined, data are pumped at the pipeline rate of these
functional units, compared to the systolic cycle rate in
traditional systolic arrays (Figure 1). For each iteration,
multiple unrelated data samples from all threads are input,
processed and output within one systolic cycle (Figure 3).

Figure 3: Multithreaded systolic processing phases

within a processing element.
Next we identify three function blocks that could limit the
performance increase of multithreaded systolic computation:

Inter processing element communication channels. We
can expect at some point no increase in the systolic array
throughput if bisection bandwidth of the systolic array
remains constant.
Register file. Enough operand storage must be provided
within each processing element to handle the increased
number of data elements from multiple threads.
Delay elements. Delay elements are situated on
communications channels and these delays can be

implemented within the register file or local memory. The
number of delay elements required in multithreaded
processing element is the sum of all delays specified for
each thread.

4. SIMULATION RESULTS

4.1. Algorithm selection
A basic core of mathematical algorithms arising in problems
of modern multimedia and image processing consists of linear
algebra and linear operator theory. We focus on systolic
algorithms for two well-known linear algebra algorithms,
namely Gaussian elimination and Givens rotations [1].
Gaussian elimination is a standard method for solving linear
systems of equations and is one of the most widely used
algorithms for LU decomposition of matrices [5]. Givens
rotations are usually considered as a method for QR
decomposition of matrices [5]. More generally, Givens
rotations can be used for QR decomposition as well as for
orthogonal triangularisation.

4.2. Simulation environment
The simulation is focused on the execution of computations
within each processing element of the systolic array. We
functionally simulate multithreaded systolic computation
operation as it is executed on a processing element employing
a parameterised very long instruction word (VLIW) processor
simulator.

Number of functional units by
Type (T) / Latency (L)

Add Mul Div/Sqrt

PE
model
name

PE
operation

issue
width

T L T L T L
A 5 2 3 2 3 1 17
B 8 2 5 2 5 2 17
C 8 4 5 4 5 4 17

Table 1: Description of processing element models used in
the simulations.

Three different models of the processing element are treated
in this paper (Table 1). All computational functional units
within the three models are pipelined into 5 stages, except for
divide/square root units that have 17 processing element
clock cycle latency. The number of memory and inter
processing element communication functional units is fixed at
two for the model A and at eight units for the models B and C
respectively and are two stage pipelined. Operation issue
width describes the maximum number of operations
simultaneously executable within the processing element.
There are no restrictions on the type of operations that can
proceed concurrently, as long as there are no data or structural
hazards.

4.3. Simulation results
The results present speedups achievable on a multithreaded
systolic array running the selected algorithms on the
presented processing element architectures. Speedups are

I #2,1 P #2,1 O #2,1
Sample #2
Thread #1

Multithreaded systolic cycle

PE clock cycle

Sample #1
Thread #1

Sample #1
Thread #2

I #1,2 P #1,2 O #1,2

I #1,1 P #1,1 O #1,1

I #1,i P#1,i O #1,i

•
•

Input data vector_
Thread_1

Input data vector_
Thread_2

Input data vector_
Thread_M

Output data vector_
Thread_1

Output data vector_
Thread_2

Output data vector_
Thread_M

: :
:
:

:
:
:

M ultithreded systolic array

PE
#1

PE
#P

based on the execution time ratios of multithreaded systolic
computation vs. single threaded systolic computing.

Figure 4: Multithreaded systolic computation of
Givens rotations. Speedup.

Figure 5: Multithreaded systolic computation of
Gaussian elimination. Speedup.

The speedups defined reflect the true processing element
clock cycle-by-cycle situation within the processing element
and as such they also reflect the net throughput of each
processing element. Our definition does not take into account
the second level effects as data load/store to/from systolic
array.
We can define the speedup SMTH of multithreaded program
running one type of algorithm versus single threaded program
running the same type of algorithm as

program dedmultithrea of timeExecution
program threadedsingle a of timeExecution MSMTH

⋅=

where M equals to number of threads. Both algorithm
versions have to perform an equal job and the equalisation
constant is M. Speedup is calculated for the same processing
element model running a different number of threads.
From Figure 4 we can observe that the speedup curve flattens
already with two threads, since the algorithm contains long
latency arithmetic operations, non-pipelineable operations
and insufficient number of resources available within a given
processing element. A similar observation applies to Figure 5,

although higher speedups are achieved, since the long latency
operation count is smaller for this algorithm. When multiple
long latency functional units are available, than the speedup
continues to increase.
Multithreaded systolic computation creates the following
effects:

PE utilization is increased. This is due to the fact that
there are many independent operations available and these
can be executed concurrently.
As a direct consequence of multithreading the net
throughput increases. As long as there are enough
pipelined functional units and inter processing element
communication channels, the speedup curve can
experience a proportional increase.
Basic blocks of the code executed on processing elements
become longer, which results in the opportunity for the
extraction of more ILP.
Register requirements increase proportionally to the
number of threads.

5. CONCLUSIONS

Multithreaded systolic computation results in higher systolic
array's throughput, due to improved utilization of pipelined
functional units within processing elements.
A linear increase in the throughput is observed as long as the
processing element functional units are pipelined and the
algorithms do not experience very low computation-to-
communication ratios. In the case of linear algebra algorithms
that require the computation of lengthy square root and
division operations that can not be pipelined, multithreading
can not provide any significant benefit unless multiple
functional units are employed. Classical DSP algorithms
require only multiply-accumulate type of operations and as
such they can experience even better speedup results.
Programmability of individual processors of the systolic array
is a key to the straightforward implementation of various
algorithms with a multithreaded systolic computation
concept. Multithreaded systolic computation provides
speedups that asymptotically approach the number of threads
executed simultaneously on the systolic array. The ideas
outlined in the paper are equally well applicable to systolic
and SIMD arrays alike.

6. REFERENCES
[1] High Performance VLSI Signal Processing: Innovative Architectures
and Algorithms, vol. I, II, Edited by: K. J. R. Liu, K. Yao, IEEE Press, 1998.
[2] Special issue on: Systolic Arrays, Computer, vol. 20, no. 7, July
1987.
[3] R. Sernec, M. Zajc, "Multithreaded systolic computation: A novel
approach to performance enhancement of systolic arrays", Elektrotehniški
vestnik, vol. 68 (2-3): 81- 89, 2001.
[4] Special issue on: The Future of Micro Processors, Computer, vol. 30,
no. 9, September 1997.
[5] G. H. Golub, C. F. Loan, Matrix Computations, 3. edition, Johns
Hopkins, 1996.

-

1

2

3

4

1 2 4

Number of threads

Sp
ee

du
p

A
B
C

-

1

2

3

4

1 2 4

Number of threads

Sp
ee

du
p

A
B
C

