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ABSTRACT

In this paper, it is shown that the use of a particular
autocorrelation estimator, with fixed-length window, al-
lows to improve the SNR of damped exponential signals
in noise. A simple method based on a polynomial ap-
proximation of a geometric series is derived in order to
compute the optimal window length in both single and
multiple mode cases. Using multiple simulations, the
results achieved with the original Kumaresan and Tufts
method, which operates directly on data, are compared
to those obtained when the same algorithm is applied
to the autocorrelation estimates. It appears that, on
signals consisting of one and two damped complex ex-
ponentials in white noise, the latter approach performs
better than the Kumaresan-Tufts method when using
the optimal window length.

1 INTRODUCTION

In the case of damped complex exponentials, the most
popular parametric estimation method is the well-
known Kumaresan and Tufts (KT) approach [1]. It
performs a reduced rank pseudoinverse of the data ma-
trix to get backward linear prediction parameters. By
contrast, indirect approaches, that is using autocorre-
lation estimates like the Yule-Walker (YW) approach
(see [2]), may be used although the latter is theoreti-
cally not appropriate in the case of damped signals. In
this framework, Händel [3] has proposed some modifi-
cations to the original YW approach and showed, using
Monte Carlo simulations, that his approach outperforms
the KT method in terms of accuracy versus algorithmic
complexity. Another way to deal with damped exponen-
tials is to use an autocorrelation estimator that keeps
constant the number of samples involved in the calcu-
lation of each lag [4]. The resulting estimator is closely
related to the covariance method in linear prediction [5].

In this paper, our interest is focused on the latter
autocorrelation estimator. It will be proved that in some
cases, the window length may be chosen so as to improve
the signal to noise ratio (SNR) of each component. A
simple method to determine the optimal window length
will be given, and multiple simulations will show the

resulting improvements on the estimation of the signal
parameters, and especially on the estimation variance,
comparatively to the KT method.

The paper is organized as follows. In section 2 some
theoretical results on the SNR improvement of damped
complex exponentials in noise are presented. The sim-
plest case of one damped exponential is discussed, and
a polynomial method allowing to compute the optimal
window length is proposed. The results are then ex-
tended to the multiple mode case. Multiple simulations
using KT method both on data and autocorrelations are
compared in section 3. Finally, the conclusions are given
in section 4.

2 MAIN RESULTS

Consider the following complex signal composed of M
damped exponentials

x(n) =
M
∑

i=1

hiz
n
i + e(n), n = 0, ..., N − 1 (1)

where zi = ρie
jωi (ρi < 1) is the ith component with

complex amplitude hi. e(n) is a Gaussian complex white
noise sequence with zero mean and variance σ2

e . The
initial SNR of each exponential component is defined by
SNRi = |hi|

2/σ2
e .

The autocorrelation estimator under study is defined
(only for positive lags) by [4]

r̂(k) =
1

L

L−1
∑

n=0

x∗(n)x(n+ k), k = 0, ..., N − L (2)

Using the model defined in (1) and after straightforward
calculations, one can show that r̂(k) is a combination of
a deterministic term r(k) and a random term ε(k)

r̂(k) = r(k) + ε(k) =
M
∑

i=1

h′iz
k
i + ε(k) (3)

where

h′i =
hi

L

∑M
l=1 h

∗
l fL(ziz

∗
l )

ε(k) = 1
L

∑L−1
n=0

[

∑M
l=1 h

∗
l z

∗n
l e(n+ k)

+hlz
n+k
l e∗(n) + e∗(n)e(n+ k)

]

(4)
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fL(z) is a geometrical series with ratio z:

fL(z) =

L−1
∑

n=0

zn =
1− zL

1− z
(5)

Note that the autocorrelation model in equation (3) is
the same that in equation (1) except that in the autocor-
relation model, ε(k) is a correlated and non-stationary
noise with mean and variance

E[ε(k)] = σ2
eδ(k)

V ar[ε(k)] =
σ2

e

L2

∑

l

∑

r

[

h∗l hrfL(z
∗
l zr)

+hlh
∗
r(zlz

∗
r )
kfL(zlz

∗
r )
]

+ σ4
e/L

(6)

This equation shows that V ar[ε(k)] depends on k. Let
us consider the most pessimistic case, ie. V ar[ε(k)] is
constant and equal to maxk V ar[ε(k)] denoted by σ2

ε .
For simplicity, it will be supposed that σ2

ε is achieved
when k = 0, which is not true in general, but will hold
for the forthcoming simulations. As for the signal x(n),
one can define a new SNR for each component of the
sequence r̂(k) as SNR′

i = |h
′
i|

2/σ2
ε , and a SNR gain by

the ratio

gi(L) = SNR′
i/SNRi (7)

In the next sections, it will be shown that, in some
cases, a SNR improvement (gi(L) > 1) can be achieved.
To illustrate this, let us consider the case of a single
damped sinusoid in noise.

2.1 Single mode case

In the single mode case, g(L) is given by

g(L) =
SNR.f2

L(|z|
2)

L+ 2SNR.fL(|z|2)
(8)

Figure 1 shows the SNR gain versus the window length
for some values of |z|. The use of the autocorrelation
estimates as defined in (2) instead of the original data
may improve the SNR, but may also reduce it. Gen-
erally speaking, when the SNR of the original signal is
too low and the components are excessively damped, it
is better to use the data. The SNR improvement is im-
portant when the original SNR is not too low and/or
the complex exponential is not too much damped.

It may be observed from figure 1 that there exist an
optimal window length Lopt that maximises g(L). This
length depends on both the initial SNR and the damp-
ing factor. The closer z is to the unit circle, the larger
Lopt is, and conversely. The analytical computation of
the optimal value of L is not a simple task due to the
high nonlinear feature of both the numerator and the de-
nominator of g(L) in equation (8). Instead of using an
iterative approach, one can consider an approximate so-
lution using a polynomial approximation of the function
fL(z) with respect to L. The Taylor series expansion of
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Figure 1: SNR gain versus window length for SNR = 0
dB (—) and SNR = −10 dB (· · ·).

the function fL(z) around L = 0 is

fL(z) =
1

1− z
−

1

1− z

∞
∑

j=1

(log z)j

j!
Lj (9)

A good approximation of fL(z) may be obtained by re-
taining onlym terms from the infinite sum above leading
to the finite order polynomial

f̂L(z) =
m
∑

j=0

αj(z)L
j (10)

where α0(z) = 1
1−z and αj(z) = −(log z)j

(1−z)j! , for j =

1, ...,m. For this approximation to hold in a large re-
gion of L, we must have | log z| < 1. As will be seen
in the next paragraph, when | log z| ≥ 1, the function
fL(z) can be approximated by a fixed value or simply
neglected. In the simple mode case, the argument z of
the function fL(z) is to be replaced by |z|2 which verify
the condition | log |z|2| < 1 with the realistic assumption
of a reasonable damping factor. By replacing fL(|z|

2)

in (8) by its approximation f̂L(|z|
2), it follows that

g(L) ≈
SNR

(

∑m
j=0 αj(|z|

2)Lj
)2

L+ 2SNR
∑m

j=0 αj(|z|
2)Lj

(11)

Now, the problem of maximizing g(L) with respect to L
is reduced to the determination of a particular real zero
of the first derivative of g(L). This will be generalized
in the next paragraph.

|z| 0.90 0.92 0.94 0.96 0.98 0.99 0.999
-10 dB 6 8 11 17 33 67 672
0 dB 9 11 15 23 46 93 927
10 dB 14 18 24 37 74 149 1494

Table 1: Optimal length as a function of |z| and the
SNR.

Table 1 shows the optimal window lengths obtained
by the polynomial approximation with order m = 10. It
may be noted that Lopt is an exponentially increasing
function when |z| tends to 1.
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2.2 Multiple mode case

First, begin by rewriting the expressions of h′i and σ2
ε

h′i =
hi

L

∑

l h
∗
l fL(ziz

∗
l )

σ2
ε =

σ4

e

L
+

2σ2

e

L2 Re
{

∑

l,r h
∗
l hrfL(z

∗
l zr)

} (12)

In this case the argument of the function fL(z) is not al-
ways real. Indeed, the cross products z∗l zr for l 6= r are
complex valued leading to an oscillatory behavior of the
sums gL(z

∗
l zr) and consequently their polynomial ap-

proximations are very poor especially when arg(z∗l zr) is
large (high frequency oscillations). When | log z∗l zr| < 1,
a polynomial approximation of the function performs
well. If | log z∗l zr| ≥ 1, we have found that fL(z

∗
l zr) can

be replaced by its steady state value, ie. 1/(1 − z∗l zr)
or simply 0. This is due to the fact that the interaction
energy between two remote poles is negligible compara-
tively to the energy of one or the other of the two poles.
With this in mind, fL(ziz

∗
l ) may be now replaced in the

expression of h′i by its approximation of order m

h′i ≈
hi
L

m
∑

j=0

[

∑

l

h∗l αj(ziz
∗
l )
]

Lj =
hi
L

m
∑

j=0

λj(zi)L
j (13)

In the same manner, σ2
ε may be written as

σ2
ε ≈

σ4

e

L
+

2σ2

e

L2

∑m
j=0 Re

{

∑

l,r h
∗
l hrαj(z

∗
l zr)

}

Lj

≈
σ4

e

L
+

2σ2

e

L2

∑m
j=0 γjL

j

(14)
The SNR gain becomes a ratio of two polynomials

gi(L) ≈

∣

∣

∑m
j=0 λj(zi)L

j
∣

∣

2

L+ 2
∑m

j=0 γjL
j
=

∑2m
j=0 µj(zi)L

j

∑m
j=0 νjL

j
(15)

The optimal value of L that corresponds to the maxi-
mum of the function gi(L) (dgi(L)/dL = 0) is a real and
positive root of the following polynomial of order 3m−1

Pi(L) =
∑2m

j=1 jµj(zi)L
j−1.

∑m
j=0 νjL

j

−
∑2m

j=0 µj(zi)L
j .
∑m

j=1 jνjL
j−1 (16)

As an example, figure 2 shows the SNR gains for
two damped exponentials with same SNR (0 dB) and
different damping factors (z1 = 0.96ej2π0.08 and z2 =
0.98e−j2π0.08). So | log z∗1z2| = 1.0072, which is greater
than 1. The approximation curve obtained using a poly-
nomial of orderm = 30 is a smoothed version of the gain
when no approximation is used. Using the polynomial
approximation, optimal values of L with respect to the
two exponentials are 23 and 54 respectively, which ap-
proximately coincides with the theoretical maxima of
SNR gains. Here the value of L that ensures a SNR
gain superior to 0 dB for both components can be set to
L1opt. This choice is not optimal for the second compo-
nent but a larger value of L could reduce the SNR of the
first one. Note that, compared to the single mode case,
the optimal window length for the second component
has moved, and is the same for the first one.
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Figure 2: SNR gains on signal containing two damped
exponentials at 0 dB. (—) True gain using exact expres-
sion of fL(z). (· · ·) Polynomial approximation, m = 30.

3 SIMULATIONS

In this section, some results obtained on the pole esti-
mation of damped exponential signals from noisy data
are presented. Comparisons will be made between
KT method applied on data (KT-data) and the same
method operating on autocorrelation estimates defined
in equation (2) (KT-AC). The same prediction order is
used in both cases.

The first simulation consists of one damped complex
exponential located in polar coordinates at (0.98, 2π0.2)
with amplitude 1. The white noise variance is set in or-
der to have a SNR of 0 dB. The prediction order for
both methods is set to p = 10. Table 2 shows the re-
sults achieved using the two methods with 500 noise re-
alizations. The estimated variance of the estimated pole
location achieved when using KT-AC (L = Lopt = 46) is
better than that obtained with KT-data, when the pa-
rameter c is the same for the two methods (c denotes the
number of rows of data and autocorrelation matrices).
In fact, KT-AC method uses Lmore signal samples than
KT-data. But, even if cdata is chosen equal to cautoc+L,
it can be seen the results are still better with KT-AC.
Due to the non-whiteness of the noise ε(k), one can ex-
pect a large bias when using the autocorrelations. But
the results achieved show that the bias (and thus the
MSE) is also better compared to that obtained on data.

KT-data (×10
−3) KT-AC (×10

−3)
c V ar |Bias|2 MSE V ar |Bias|2 MSE

10 8.66 1.90 10.56 1.06 1.93 2.99
15 4.48 1.59 6.07 0.69 0.85 1.54
20 3.21 1.56 4.78 0.40 0.54 0.94
25 5.67 1.97 7.64 0.47 0.38 0.85
30 2.24 2.04 4.28 0.52 0.25 0.76
60 1.52 3.76 5.29 0.22 0.05 0.26
70 1.43 4.61 6.04 0.21 0.01 0.22

Table 2: Results achieved on signal containing one
damped complex exponential.
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The second simulation signal contains two damped si-
nusoids at (0.96, 2π0.08) and (0.98, −2π0.08) in polar
coordinates, with unit amplitudes. The SNR is set to
0 dB. Table 3 shows the results obtained with the KT-
AC method (p = 10 and c = 20) using several window
lengths. The theoretical results are confirmed since the
optimal (with regard to the variance) window lengths
for the two components are L ≈ 23 and L ≈ 54, respec-
tively.

L V arz1 V arz2 MSEz1 MSEz2

15 -21.69 -31.58 -21.41 -31.03
20 -21.34 -32.04 -21.04 -30.87
23 -21.74 -32.15 -21.23 -30.93
30 -19.28 -30.77 -18.95 -29.49
40 -19.84 -31.49 -19.24 -29.39
50 -19.32 -33.70 -18.54 -29.83
54 -20.49 -33.62 -19.65 -29.58
60 -18.76 -31.32 -18.12 -28.50

Table 3: Variance and MSE of estimated poles using
KT-AC (in dB).

Comparison with both the variances and MSEs
achieved with KT-data in table 4 shows that the au-
tocorrelation method yields a reduction of the variance
of the second component of about 10 dB. The KT-data
method does not reach the performances of the KT-
AC method with the same prediction order and signal
length. This suggests that to attain the same perfor-
mances, the prediction order of the KT-data method
must be raised, thus increasing the computational bur-
den of the estimation procedure.

c V arz1 V arz2 MSEz1 MSEz2

10 -17.11 -20.64 -15.86 -19.76
15 -17.45 -23.41 -16.10 -22.07
20 -18.01 -23.58 -16.31 -21.92
25 -18.65 -26.35 -16.49 -23.76
30 -16.85 -25.45 -14.70 -22.75
60 -15.23 -26.39 -12.48 -21.82
70 -14.89 -26.69 -11.82 -21.44

Table 4: Variance and MSE of estimated poles using
KT-data (in dB).

Figure 3 shows the positions of the poles on the z-
plane. The circles are centered on the mean of estimated
pole locations, their radii being equal to the estimated
standard deviations. The crosses figure the true pole
locations. Another consequence of the noise reduction
observed with KT-AC method lies in the position of the
poles relatively to the unit circle. In backward predic-
tion, the KT-data estimates fall inside the unit circle
(and outside after reflection, as shown on figure 3(b)),
and thus cannot be separated from the extraneous zeros
introduced by the use of a prediction order larger than
the number of components. That is not the case with
KT-AC method for the signal under study.
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Figure 3: Positions and variances of the estimated poles.
(a) L = 23, p = 10 and c = 20, (b) p = 10 and c = 20.

4 CONCLUSION

A particular autocorrelation estimator has been stud-
ied in the case of noisy damped exponential signals. It
is shown that under the assumption of reasonable noise
level and damping factors, the use of this estimator leads
to an increase of the SNR. A polynomial approximation
method has been derived to compute the optimal win-
dow length associated to the autocorrelation estimator.
This approximation can be used after an initial estima-
tion since it requires the knowledge of signal parame-
ters. Then, it is shown using multiple simulations that
the SNR enhancement results in a more accurate and re-
liable parameter estimation in the case of KT method.
Moreover, the unit circle criterion, allowing to separate
the signal and noise poles, operates in better conditions.
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