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ABSTRACT

A new family of source number estimators has appeared
from the information provided by Gerschgorin radii and
the centers of a unitary transformed covariance matrix.
We suggest using a generalization of Gerschgorin's the-
orem developed for the eigenvalue problem Ax = �Bx.
This generalization can be applied to the perturbation
of multiple eigenvalues and the usual theorem of
Gerschgorin appears only as a particular case. For this,
we need de�ning regions that bound a distance called
the chordal metric. The techniques of diagonalization
based on unitary transformation are necessary to
exploit the estimated covariance matrix too. With
sinusoidal signals embedded in a colored noise, the
used criterion GDEdist with this generalization shows
a better detection rate compared to that obtained by
the simple Gerschgorin theorem.

1 INTRODUCTION

In most of the applications containing harmonic signals,
we must determine their number to separate them from
the noisy background and then to estimate their pa-
rameters like frequency. In spectral analysis, it is a
crucial problem for the high resolution methods such
as MUSIC, ESPRIT where we must truncate the esti-
mated covariance matrix in signal and noise subspaces.
To cope with this problem, several source number de-
tection criteria have been proposed in literature. Our
choice concerns the criteria based on the Gerschgorin
theorem applied to a covariance matrix. Those criteria
are elaborated from the matrix perturbation theory and
more particularly from the inclusion regions of eigen-
values of a matrix using the Gerschgorin theorem. By
de�nition, the inclusion region of a matrix is a region of
the complex plan that contains at least one of its eigen-
values. The eigenvalues �1; :::; �n of a square matrix A,
where A 2 C nxn , depend on the elements of A and are
the roots of the characteristic polynomial of A from the
Cayley-Hamilton theorem. So, any perturbation that
modi�es one or several elements of A can change the
eigenvalues in a small or high proportion. It is this no-

tion of "proportion" that is taken into account by the
inclusion regions and that we consider as useful infor-
mation. We can underline that it is not necessary to
search the smallest inclusion regions; in fact, we tend
to the estimated eigenvalues provided by the numerical
methods and the further information brought by the in-
clusion regions can become trivial. Moreover, the eigen-
values of the estimated covariance matrix are di�erent
from those of the theoretical covariance matrix, in par-
ticular about the multiplicity of eigenvalues associated
to the noise subspace. Section 2 describes the Gener-
alized Gerschgorin theorem used to de�ne our inclusion
regions. Now, two matrices are required. In section 3,
we show a possible application of this generalization to
detect the source number. In section 4, simulation re-
sults are given with criteria based on the GDE form.
Finally, the last section deals with the conclusion.

2 THE GENERALIZED GERSCHGORIN'S

THEOREM

The inclusion regions Gi of the eigenvalues �i of the
matrix A = [aij ] of orderN submitted to a perturbation
matrix E, can be described by the following Gerschgorin
theorem :

Gi = f� 2 C :j �� aii j � Ri = kaik1g (1)

where kaik1 is the ith row vector of A � diag(A) and
diag(A) is the matrix that contains the main diagonal of
A. These regions are called Gerschgorin disks with each
disk Di de�ned by a radius Ri and a center Oi = aii.
The eigenvalues �i belong to the union of the N disks.
However, the direct application of this theorem does not
enable us to detect the source number from the disks
because the radii are higher and the disks overlapped.
Di�erent solutions have been put forward in literature
using a unitary transformation matrix applied to the
covariance matrix to transform it into an almost diag-
onal matrix [1]. An extension of the Gerschgorin the-
orem is possible for the generalized eigenvalue problem
Ax = �Bx, always based on the perturbation theory for
multiple eigenvalues. Let (A;B) be a regular pair, then



we have the following theorem [2] :

Di =

8<
:h�; �i :j �aii � �bii j �

NX
j=1;j 6=i

j �aij � �bij j

9=
;
(2)

where the generalized eigenvalues of (A, B), let
�(A; B) = f�i=�i : �i 6= 0g, are included in the union
of the N regions Di. If B = I , I being the identity
matrix, we obtain the equation (1). Moreover, we have
the following property again : if the regions Di are pair-
wise disjoint, then each captures exactly one eigenvalue.
However, as (�; �) appears on both sides, the regions
Di cannot be directly computed. But a judicious way
has been found by Stewart to remove this dependence,
based on the properties of norms and Cauchy's inequal-
ity (see [3], p. 296 for the demonstration). With ai the
row vectors of A � diag(A) and bi the row vectors of
B � diag(B), we have the bound :

�i =

s
kaik21 + kbik21
jaiij2 + jbiij2

(3)

for the regions Gi de�ned by :

Gi = f h�; �i : X ( h�; �i; haii ; biii ) � �i g (4)

and the regions Di are included in Gi. The chordal met-
ric X is de�ned by :

X ( h�; �i; haii ; biii ) =
j �aii � �bii jp

jaiij2 + jbiij2
p
j�j2 + j�j2

(5)

This metric, never or rarely employed in signal process-
ing, can be also used to measure the perturbation of
eigenvalues. It corresponds to the distance between two
matrix pairs. From the equation (3), we notice that
the regions Gi only depend on the elements of the pair
(A;B). So, we can avoid the computation of the gener-
alized eigenvalues. The unitary transformations of the
covariance matrix, previously applied, are always valid.
So, in the next section, we show one possibility of ex-
ploiting the information provided by the regions Gi.

3 DETECTION BASED ON THE COVARI-

ANCE MATRICES

3.1 Choice of the matrices

The generalized eigenvalues are submitted to perturba-
tion matrices (E;F ) such as A! A" and B ! B� where
A" = A+E = DA+" OA and B� = A+F = DB+� OB .
DA = diag(A) and OA is composed of the o�-diagonal
elements of A. In the same way forDB and OB . We have
0 � ("; �) � 1 such as (" = 1; � = 1) gives (A"; B�). Our
goal is to reduce the values ("; �) such as if ("; �) tends

to 0, we obtain the estimated generalized eigenvalue �
in the expression :

(DA + " OA)x = �(DB + � OB)x (6)

or, under another form :

(DB + � OB)
�1(DA + " OA)x = �x (7)

A problem of matrix conditioning may crop us in this
equation. We must choose the matrix that has the best
condition number to B� between the pair (A;B) if this
number is di�erent. To connect this equation to our
problem of source number detection, we must choose
two matrices. Naturally, we would rather choose the
covariance matrix that can be written under di�erent
forms. A possibility consists in taking the covariance
matrix C of dimension (N,N) and a matrix called CT
obtained after a unitary transformation of C, such as
CT = UHCU with a unitary matrix U and a partition
of C de�ned by :

U =

�
U1 0

0
H 1

�
; C =

�
C1 c

c
H cNN

�
(8)

where the vector c is the last column of C except the
element cNN and U1 contains the eigenvectors of C1
obtained after an eigendecomposition . The expression
of CT is :

CT =

�
S1 UH

1
c

c
HU1 cNN

�
=

0
BBB@

�
0

1
R1

�
0

2
R2

. . .
...

RH
1

RH
2

� � � cNN

1
CCCA
(9)

where �
0

i are the eigenvalues of C1. A unitary trans-
formation applied to the covariance matrix C does not
change the eigenvalues, so the eigenvalues of C are equal
to those of CT . Another consequence is that the con-
dition numbers are equal, that is to say we can equally
choose the matrix C or CT to be B� . However, with
the perturbation theory based on Gerschgorin's theo-
rem, Wilkinson has shown that the o�-diagonal elements
of O(") are reduced to order O("2) by diagonal similar-
ity transformations [4]. If we consider DA = DB and
" = � but A" of order O("

2) and now B" of order O("),
the equation (7) becomes :

(DA +O("))�1(DA + O("2))x = �x (10)

for " suÆciently small. If there is no perturbation, the
estimated generalized eigenvalues � equals exactly one.
With a high perturbation (" ! 1), � tend to 1 again.
That is why we prefer to take CT for A" and C for B".
The forms of C and CT lead us to :

(DC +OC)
�1(DCT +OCT )x = �x (11)



with DC = diag(C), DCT = diag(CT ), OC the matrix
of o�-diagonal elements of C of order O(") and OCT the
matrix of o�-diagonal elements of CT of order O("2).
For the matrix CT , the energy is concentrated in the
main diagonal and is connected to the eigenvalues of
C1 while the diagonal elements of C tend to be equal.
So, we can obtain two distinct signal and noise sub-
spaces from the estimated generalized eigenvalues with
any value of " (0 � " � 1). When " is small, the smallest
generalized eigenvalues seem to be less a�ected by per-
turbation than those in considering only CT . We know
it is possible to obtain two distinct sets of eigenvalues.
Have we got the same possibility with the regions Gi by
considering the matrices C and CT ? The regions Gi are
bounded by �i from the equation (3). The bounds �i
are minimal when the numerator is small and the de-
nominator high. It is true when o�-diagonal elements
are minimal, that is to say that the energy of the matrix
C is concentrated on the main diagonal. The minimal
perturbations in (3) tend to be around 1=

p
2. For a

commodity of visualization and to adopt a 2D represen-
tation like in [5], we make the transformation Æi = 1=�i.
Thus, with the couple (�i; Æi), the values near the ori-
gin are supposed to be associated to the noise subspace
again.

3.2 Detection criteria

To show the performances of the proposed method,
we choose the criterion GDEdist that is a heuristic
criterion based on the normalized Euclidean distance
called dist(i) that takes into account the contributions
of (�i; Æi), let :

GDEdist(k) = dist(k)� F (L)

N

PX
i=1

dist(i) (12)

with k = 1; : : : ; N and F (L) is a constant value that
can be connected to the sample number L. Usually,
F (L) = 1 or F (L) can vary in a range around 1 by short
successive steps (for example � = 0:01) and we retain
the largest stages where the estimated source number M
remains similar. The distance dist(i) is described by :

dist(i) =
p
(�i=�max)2 + (Æi=Æmax)2 (13)

where �max and Æmax are respectively the maximal val-
ues of �i and Æi. The criterion stops when a �rst negative
value appears and the estimated source number becomes
M = k�1. We equally consider this criterion with only
the values Æi in order to avoid the calculation of the gen-
eralized eigenvalues. We apply the proposed method to
the Marple signal [6]. This signal of 64 samples is com-
posed of 4 complex sinusoids in a colored noise. Two
sinusoids are very close to normalized frequencies 0.2
and 0.21 and they are more powerful by 20 dB than the
two others placed at the normalized frequencies 0.1 and
-0.15. With the Gerschgorin's radii Ri and centers Oi

calculated from the matrix CT and used in the criterion
GDEdist, we �nd two complex sinusoids. If we replace
this information by (�i; Æi) in the criterion (see �gure 1),
we obtain 4 sources by varying F (L) in the range up to
[0:6 1:4] around 1 (see �gure 2). A larger range brings
about 3 estimated sources.
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Figure 1: 2D representation of the Marple signal
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Figure 2: Variations of F (L) (� = 0:01), Marple signal

4 SIMULATION RESULTS

The signal under consideration is composed of 2 sinu-
soids embedded in a noise n(t), let :

x(t) = A1 sin(2�f1t) +A2 sin(2�f2t) + n(t) (14)

where t = 1; : : : ; 64; the normalized frequencies f1 =
0:2; f2 = 0:2+1=64. The parameters A1 and A2 depend
on simulations (same form of signal as [7]). The esti-
mated matrix C is under the modi�ed covariance form
and of dimension (32; 32). For each result, 200 simu-
lations of Monte-Carlo are carried out. The GDEdist



criterion is applied to CT (see [5]) and to (CT ; C) from
the equation (12) with F (L) = 1.
Case 1 (identical parameters Ai), the parameters A1 =
A2 and vary from -5 db to +15 dB and n(t) is a white
Gaussian noise. The results obtained by the GDEdist

criterion, applied to the information (Oi; Ri) of CT ,
slightly outperform those obtained by the information
(�i; Æi) of (CT ; C) of one dB but reach 100% detection
rate with high SNR (Signal to Noise Ratio) (see �gure
3). The simulations are carried out with the same pa-
rameters as previously with n(t) a nonwhite Gaussian
noise obtained through an AR(1) of coeÆcient 0.9. The
results are slightly better with the GDEdist(�i; Æi) cri-
terion but the best detection rate is not obtained (see
�gure 3 ).
Case 2 (di�erent parameters Ai),we take A1 = 10 dB
and A2 varies from -5 dB to +15 dB; n(t) is a nonwhite
Gaussian noise generated in the same conditions as pre-
viously. This case is diÆcult from the point of view
of the frequency resolution, of the dynamic resolution
and of the nature of the noise. The best results are ob-
tained by the GDEdist(�i; Æi) criterion that can �nd 4
sources from 4 dB with a high detection rate compared
to the GDEdist(Oi; Ri) (see �gure 4). Those perfor-
mances are almost similar to those of the �gure 3 with a
Gaussian white noise and show the possibility to discern
the sources of di�erent amplitude with a low SNR like
in the case of Marple's signal.

5 CONCLUSION

The study of the generalized Gerschgorin's theorem
and of the matrix perturbation theory can be a way of
research to detect the source number. In this paper,
we have presented one possibility based on the matrix
pair (CT ; C) to improve the detection rate of sources
in a critical situation but its cost of calculation is
important. Other solutions can be found with a clever
selection of estimated covariance matrices and criteria
to exploit the information provided by these matrices,
that is why other studies are under investigation.
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Figure 3: GDEdist criterion, identical amplitudes
(white noise : � , nonwhite noise : � � � )
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Figure 4: GDEdist criterion, di�erent amplitudes
(nonwhite noise)


