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Abstract

A vector quantization fast search algorithm using
hyperplane based k-dimensional multi-node search tree
is presented. Misclassi�cation problem associated with
hyperplane decision is eliminated by a multi-level back-
tracing algorithm. The vector quantization complexity
is further lowered by a novel relative distance quanti-
zation rule. Triangular inequality is applied to lower
bound the search distance, thus eliminated all the
sub-tree in the k-dimensional search tree during back-
tracing. Vector quantization image coding results are
presented which showed the proposed algorithm out-
perform other algorithms in literature both in PSNR
and computation time.

1 Introduction

Vector Quantization (VQ) is a useful data compres-
sion tool for speech and image coding. A vector quan-
tizer, Q(�), maps the k-dimensional (k-d) Euclidean
space, Rk, into the codebook C:

Q : x 2 R
k �! Cj 2 C with j 2 [1; 2; � � � ; N ]

where x is the input vector, the codebook is a collec-
tion of N codevectors, Ci : i = 1; 2; � � � ; N , in R

k, and
j is the codeword index. N is also known as the size
of the codebook C. The codeword index can be trans-
mitted or stored, and thus achieve compression. The
reconstructed signal at the output of the VQ decoder
is given by Cj which is one of the codevectors in C in-
dexed by j, the output codeword index from the VQ
encoder. The VQ encoder is optimal when the cho-
sen codevector Cj for input signal x minimize a given
distance measure d(x;Cj). Di�erent distance function
has been investigated for various applications. In this
paper, we will concentrate on the Euclidean distance
which founds applications in image coding [1] etc.

Although VQ is an eÆcient compression tool, it has
very high computational complexity which hindered
it's applications in everyday life. The high computa-
tional complexity of VQ is the result of the quantizer
which computes the distance between the input vector
x and every codevectors in the codebook C. Various
researches have been dedicated to search for an eÆcient

Figure 1: Misclassi�cation Problem

vector quantizer, which can be roughly classi�ed into
two categories

1. An eÆcient codebook structure [6]

2. An eÆcient distance computation method [8]

Tree structured VQ proposed in [6] belongs to the
�rst category. The tree structured VQ is further devel-
oped in [3, 5], where k-d tree structured VQ is pro-
posed. The k-d tree is a multi-node tree in which
each non-terminal node has multiple descendants [10]
as shown in Fig.1. The non-terminal node will there-
fore partition the voronoi cell into groups according to
the cell position with respect to the partition hyper-
plane, Hi; i 2 [1; 2; � � � ; n � 1], which are parallel to
each other, and results in n branches spanning the par-
tition node. The hyperplane Hi in k -d space is de�ned
by the normal vector h and position vector ci as

Hi = fx 2 R
k : hTx+ ci = 0g (1)

The generation of the partition hyperplanes will be dis-
cussed in Section 2. The nearest neighbor search algo-
rithm descends along the non-terminal nodes of the k-d
tree to one of the child node Si according to the hyper-
plane decision rule

Si :
�
ci�1 � hTx < ci

	
; (2)

with c0 = �1, and cM =1 as shown in Fig.2.
When the search reaches a terminal node, the code-

vectors in the terminal node are examined exhaustively
to �nd the one closest to the query vector Without loss
of generality, the following will assume the terminal
node contains one codevector. Comparison between
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Figure 2: multi-levels formed by hyperplanes

binary tree and multi-node tree with the same num-
ber of terminal node shows that the computation com-
plexity can be reduced dramatically. For example, the
quadtree hyperplane search algorithm for codebook size
256 has an average depth of 4 compared to 8 for that
of the binary tree hyperplane search algorithm. Since
the average number of distance computation, eq.(2), is
linearly proportional to the average tree depth. There-
fore it can be concluded that there will be a foreseeable
reduction in the computational complexity between bi-
nary tree search to quadtree search. Unfortunately,
hyperplane based clustering su�ers from misclassi�ca-
tion error with respect to the nearest neighbor rule
[3]. A simple back-tracing algorithm has been pro-
posed in [3] to eliminate hyperplane based misclassi�-
cation. The back-tracing algorithm exhaustively com-
pare codewords along the back-tracing path which in-
evitably increased the computational complexity of the
VQ process. Such increases in computational complex-
ity will become a bigger problem with the increase in
the number of branches for each node in the search
tree. Because along the back-tracing path, there are
more vectors required to be compared than that of the
binary tree.

2 Multi-Node Search Tree Generation

The VQ k-d binary search tree is constructed by
hyperplane that splits the input data set into equally
populated non overlapping data set according to the
hyperplane decision rule in eq.(2) and the cutting point
set ci [13]. If ci is the centroid of Si,the hyperplanes
can be considered as the bisector of centroid which re-
sult in equally populated partition. The orientation
of the hyperplane is chosen to be perpendicular to the
principle component of the input covariance matrix R

R = E(x � �x)(x� �x)T (3)

where E is the expectation operator, �x is mean of input
training vector x, and T denotes transposition. The
principle component of R is the eigenvector associates
with the largest absolute eigenvalues. The hyperplane

is constrained to pass through the centroid of the in-
put data set such that equally populated partition is
obtained. To growth the tree, cluster in one of termi-
nal node will be chosen for further partition. Follow
the results from [11] the terminal node partition that
results with the largest reduction in total sum of square
errors (SSE) will be chosen for partitioning. Such that
the generated tree will minimize the total SSE.

Let's consider the quad tree as an example to sim-
plify our discussion on multi-node search tree genera-
tion. Based on the bipartition idea, the training set will
be divided into 4 equally populated intervals in parti-
tion nodes. To growth the tree, the variance of the data
set associated with each terminal nodes are computed.
The one with the largest variance are partitioned, hop-
ping that the partitioning will lower the variance of
the partitioned data sets, and thus reduce the quanti-
zation error as mentions before. The above partition-
ing will be repeated until the number terminal nodes
reaches the desired codebook size, e.g. 256. Noted that
the above quadtree growth will method will result in
a minimum total variance search tree with each node
being partitioned with equally populated branches. As
a result, the generated quadtree may not minimize the
total SSE, and thus may not be optimal as will be dis-
cussed in Section 3.

2.1 Eliminating Misclassi�cation
The VQ encoding process begins by tracing the k-d

tree according to the hyperplane decision rule, eq.(2).
Unfortunately, this simple decision rule may misclassify
the input query vector in the nearest neighbor sense as
discussed in [3] which is also illustrated in Fig.3. The
query vectors Q1 and Q2 are both lie on the left hand
side of the hyperplane H , as does the codevector A.
However, it is the codevector B that is closer to the
query record Q1 than A as observed by comparing the
radius dA and dB of the two circle that enclose the
query vector with center at A and B, respectively.

2.1.1 Back-tracing
Back-tracing has been proposed in [3, 4] to overcome
hyperplane associated misclassi�cation. A more gen-
eral back-tracing process is considered in this paper for
multi-node hyperplane search tree. Let's consider the
back-tracing process for quadtree as an example which
is illustrated in Fig.3 for various multi-level backtrac-
ing search paths. The simplest back-tracing process is
shown in Fig.3a. During VQ encoding, when the k-d
search tree has reached a terminal node, back-tracing
will search the neighboring branch of the k-d tree un-
til it reach another terminal node. The Euclidean dis-
tance among the codevectors in the four terminal nodes
and the query vector will be compared. We called this
kind of back-tracing as zero level back-tracing. This
is because, it is obvious that the hyperplane decision
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Figure 3: 3 di�erent level back-tracing Code Trees
during back-tracing will also su�er from misclassi�ca-
tion. Multi-level back-tracing can overcome such mis-
classi�cation problem. Shown in Fig.3b is the one level
back-tracing which will found another terminal node
in the neighboring branch associated with the termi-
nal node of the k-d tree search result according to the
zero level back-tracing criteria. The distance between
all the searched terminal nodes with the query vector
will be compared and the smallest one will be chosen
as the quantization codevector. As a result, one level
back-tracing can reduce the probability of misclassi�ca-
tion better than zero level back-tracing. In general, a n
level back-tracing will search all the terminal nodes in
n+ 1 tree branches which is neighbors to the terminal
node of the multinode k-d tree search result. Show-
ing in Fig.3c is an example of the 2-level back-tracing.
Noted that the n level back-tracing will stop when-
ever, the branches share the same parent. In that case
misclassi�cation will not be possible. We adopted tri-
angular inequality technique [10] in the back-tracing
procedure, such that it eliminates sibling nodes dur-
ing back-tracing by lower bounding the distance from
the query points to the sibling nodes. When the dis-
tance is greater than the k-th nearest neighbor found
so far, further search on the sibling sub-tree will not be
necessary [9].

2.2 Relative Distance Quantization

A relative distance quantization method is proposed
in this section to compensate for the increased compu-
tational complexity in the back-tracing process. Con-
sider Fig.4, where A and B are the codevectors, and
Q1 is the input query vector. We can decide if Q1 is
closer to A or B by considering P , the projection point
of Q1 on the line AB. Let K be the ratio of the one
dimensional distance AP to AB along the line AB as

AP = K(AB) (4)

) P = K(AB) + A (5)

Substite P from eq.(5) into the projection equation
AB � (Q1 � P ) = 0 (6)

) AB �Q1 � AB � (K(AB) +A) = 0 (7)

K =
AB � (Q1 �A)

j AB j2
(8)

When K � 0:5, AP is longer than BP . By the prop-
erty of right angle triangle, K � 0:5 implies AQ1 is
longer than BQ1. Thus the nearest neighbor of Q1 is
given by the decision rule

A : fK � 0:5g (9)

B : fK > 0:5g (10)

The computation complexity of the relative distance
based vector quantization method hasO(k), where only
2k additions and N+1 multiplication is required, com-
pared to that of direct Euclidean distance computation
which requires 2k multiplications and 2k� 2 additions
and has O(2k). Note that the line AB, and distance
AB are assumed to have been pre-computed and stored
in the VQ encoder. With dimension 16 in the image
coding simulations in Section 3, substantial reduction
in the computation times have been achieved. Note
that the relative distance based quantization method is
applicable in the discussed back-tracing problem, and
all other nearest neighbor search problem.
2.3 Combining the Two Methods

The above two VQ techniques can be combined to
reduce the computation complexity and overcome the
misclassi�cation problem in multi-node k-d tree based
VQ. The relative distance quantization is applied to
the terminal nodes in multi-level back-tracing which
compensate for the increased complexity of the back-
tracing algorithm for the elimination of misclassi�ca-
tion associated with hyperplane decision rules.

3 Image Coding Results
Image coding results are presented to evaluate the

performance of the proposed vector quantizer by mea-
suring the number of oating point operations used in
the quantization process and the peak signal to noise
ratio (PSNR) of the quantized images. Various vector
quantizers are implemented by Matlab ver. 6 on a Pen-
tium 4 1.5GHz PC with 128MB memory. The PSNR
is de�ned as

PSNR = 10 log
10

2552

1

256�256

P
255

i=0

P
255

j=0(xi;j � x̂i;j)2
(dB)

where xi;j and x̂i;j are the (i; j)
th pixel of the original

and the decoded image respectively. The vector size is
chosen to be 4�4, such that with a codebook size 256,
the mean residual VQ image codec has a compression
ratio of 8, i.e. 1 bit/pixel. The training set has 4�4096
vectors extracted from 4 256 � 256 � 8-bit grey-level
images of human portrait (\Lenna", \Ti�any", \Bar-
bara", \Zelda"). The training set is used to generate
a quadtree with arbitrary hyperplane as discussed in
Section 2.

The PSNR of various VQ encoded images using the
proposed VQ algorithm and algorithms in [2, 3] are
listed in Table 3. The results showed that the back-
tracing algorithm can achieve better quantization re-
sults in both binary and multi-node search trees. The
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Figure 4: Misclassi�cation Problem

Lenna Boat
Algorithm Flops PSNR Flops PSNR
Binary 1830156 29.938 1821959 26.776

Binary(0 level) 2618376 29.958 2612788 27.004
Quad 1524051 27.909 1515446 27.157

Quad(0 level) 2110782 27.961 2099864 27.251
Airplane Pepper

Binary 1807485 26.522 1820760 27.410
Binary(0 level) 2591350 26.698 2791977 28.169

Quad 1502189 26.628 1515934 27.582
Quad(0 level) 2085579 26.722 2075937 27.654

Table 1: The PSNR (dB) of various image coding re-
sults using di�erent vector quantization methods.

PSNR performance of the VQ image coding results ob-
tained from that of binary tree and quadtree are com-
patible. Although in several cases the performance of
the quadtree are not as good as that of the binary tree,
this is due to the sub-optimal hyperplane generation
algorithm used in the simulations. The optimal hy-
perplane generation method discussed in [11] should
improve the performance of the quadtree based VQ
performance to be close to that of binary tree. How-
ever, since this paper discusses only the fast search al-
gorithm as compared to [10], optimal hyperplane gen-
eration method is out of scope and will be report in a
separate paper.

Also observed in Table 3 is the computational com-
plexity of various VQ algorithms by observing the num-
ber of oating point operations reported by Matlabs.
The number of oating point operations dramatically
reduced from the average of 2373332 to 1667248 by con-
verting a binary tree to quadtree. The VQ image en-
coding time reduces from an average of 213 seconds for
full search VQ to 25 seconds of the proposed quadtree
algorithm with back-tracing.

The reduction in computational complexity of the
proposed algorithm is achieved by the multi-node
search tree, relative distance quantization process, and
the triangular inequality for lower bounding the search
distance. It is observed that, a large number of
back-tracing is required to eliminate hyperplane re-
lated misclassi�cation. The application of relative dis-
tance quantization e�ectively reduced the computa-

tional complexity for each back-tracing process by an
order of magnitude. Furthermore, the application of
triangular inequality also helps to remove 10% of the
total possible back-tracing paths, and thus lowered the
computation time of the proposed algorithm.

4 Conclusions
An arbitrary hyerplane based multi-node k-d tree

search algorithm is proposed. Multi-level back-tracing
is applied to eliminate hyperplane associated k-d tree
VQ misclassi�cation problem. Relative distance deci-
sion rule is applied to further reduces the computa-
tional complexity in the VQ process. Triangular in-
equality is used to lower-bound the search distance and
thus eliminated a substantial amount of sub-tree in the
k-d tree during back-tracing. Image coding results are
presented with and without multi-level back-tracing,
which showed that the proposed VQ algorithm can
achieve comparable PSNR with lower computational
complexity.
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