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ABSTRACT the definition of the WD — and all the results of this paper —
need not be restricted to coherent light, in which cAge y)
would represent the complex field amplitude of the light, but
can be extended to partially coherent light, in which case the
two-point correlation function of the light can be identified
with < f(z + 12/, y+ L) f* (2 — 22/, y — 3y/) >.

In this paper we consider the normalized moments of the
WD, where the normalization is with respect to the total
energyF of the signal:

It is shown how all global Wigner distribution moments
of arbitrary order in the output plane of a (generally
anamorphic) two-dimensional fractional Fourier transform
system can be expressed in terms of the moments in the input
plane. This general input-output relationship is then broken
down into a number of rotation-type input-output relation-
ships between certain combinations of moments. As an
important by-product we get a number of moment combina-

tions that are invariant under (anamorphic) fractional Fourier o0 proo  poo ro0
transformation. E= / / / / Wiz, u;y,v)dedudydv. (2)

1 Introduction These normalized moments,,.s of the WD are thus defined

After the introduction of the Wigner distribution [1] (WD) by

for the description of coherent and partially coherent 0o poo  poo 0o

optical fields [2], it became an important tool for optical tpgrs :/ / / / Wiz, u;y,v)
signal/image analysis and beam characterization [3, 4]. In —o00J—00J—o00J—00

this paper we show how the general relationship that relates x aPuly"vidzdudydv  (p,q,m,5 >0). (3)
the WD moments of arbitrary order in the input plane and the i . .
output plane of a (generally anamorphic) fractional Fourier 3 Fractional Fourier transform and moments in the
transform (FT) system, can be broken down into a number fractional domain

of rotation-type relationships between certain combinations e (anamorphic) fractional Fourier transform of a function
of the moments. Because of the rotation-type character of f(z,y) is defined by [5, 6, 7, 8, 9]

these latter relationships, they lead immediately to a number

of moment combinations that are invariant under anamorphic co e
fractional Fourier transformation. Fap(u,v) = /_Oo /_Oo Ka(z,u)Kp(y,v) f(z,y)dzdy,
: o 4)
2 Wigner distribution
The Wigner distribution of a two-dimensional function where the kernek., (x, u) is given by
f(z,y) is defined by exp(jia) . (2% +u?)cosa — 2uzx
Ko(z,u) = ——=— .
o) ) VJjsmo sin o«
Wi (z,u;y,v) = / / fla+ 32" y+3y") ()
x f*(z— 12",y — Ly )exp[—j2m(ua’ +vy')|da'dy’ . We remark that o (u,v) = f(u,v) represents the function
(1) itself, while F; 5 . /2(u,v) corresponds to the normal two-
dimensional FT of the functioffi(x, ).
The WD Wy (x,u;y,v) represents a space functigiz, y) The fractional FT can be generated optically by a very

in a combined space/spatial-frequency domain, the so-called simple, anamorphic, coherent-optical set-up, consisting only
phase space, where is the spatial-frequency variable  of two cylindrical lenses, whose focal lengths — in combi-
associated to the space variabl@ndv the spatial-frequency nation with some appropriate sections of free space — are
variable associated to the space variapl&Ve remark that related to the angles andg.



One of the most important properties of the fractional FT which equations are equivalent to the rotation operators
is that it corresponds to a rotation of the WD in phase space:
I: g:E{fmf,l(‘3¢)7’]2m,n(ﬂ)} :|

o
We, s (@, usy,v) = Wy(zcosa — usina, zsin o + u cos o S{&ara(@)2m.n (5) }

ycos B —wvsinf,ysin B +wvcosfB). (6) = R(la + nf) [ 2%22:%277”% } 7
2k,172mn

We can as well define normalized momepis,,.s(c, 8) R{&ar 1 () n(B)}
in the fractional domain and relate these to the original S{Ear i ()0 0 (B)}

momentSi,qrs = tpgrs(0,0), cf. EQ. (3): N
Fipg Iipgrs(0,0) a.(3) — R(la—nf) R{Eak. M3, } (13)
%{EQk,ln;m.,n} ’
Hpars (0, B)E = [m [m [oo [m W, (@, 4:9,v) respectively, wher&{-} and 3{-} denote the real and the
« aPuly v dedudydy  (p,q,rs>0) (7) imaginary part, respectively, and wheRéa) represents the
4 4 P &7 8 = rotation matrix
R(a) = [ cosa  sina } (14)
—sina  cosa
/ / / / Wy (z,u;y,v)(xcosa+ usina)? _ _ _ _
Relationships between the moments in the fractional
(—xsina +ucosa)?(ycos B+ vsin )" (o, ) domain and the moments in the original domain
x (—ysin 3 + v cos B)*drdudydv. follow from the relation [cf. Eq. (7)]
Note that the total energl, see Eq. (2), is invariant under / / / / WE,, (@, w3y, v)E2k 1M2m
fractional Fourier transformation. o
From the definitions of the normalized moments in the dzdudydv
fractional domain, it follows directly that the?«9 moments o0 oo oo oo
(with » = s = 0) are not affected by the fractional Fourier = / / / /_OC Wi (@, u3y,v)82k,1 () N2m,n (B)
transformation in they-direction (with angle3), while the dedudud
y"v® moments (withp = ¢ = 0) are not affected by the one i v ch v o e
in the z-direction (with angle): = exp|—j(la +ﬂﬂ)]/ / / / W (2,03, 0)
,UquOO(aaB) = NpqOO(avo)a (8) X EakiMem ndrdudydv  (15)

MOOrs(aaﬁ) = /1'007‘5(076)' . . .

(and, if necessary, i.e., in the case that 0 andn # 0,
4 Relations between moments in the fractional domain from a similar relation based ofyx 75,, ), together with
the detailed expressions for the real and imaginary parts
of &ak in2m,n (@nd of §ax 115, ,,, if Necessary). All relevant
moment combinations up to fourth order, i2%,+ [ + 2m +
n < 4, have been represented in Table 1, where we find the
two vector entrieg andb, and the corresponding rotation

To find simple relationships between the moments of
Wy (x,u;y,v) onthe one hand and thoseldt, , (z,u;y, v)
on the other, cf. Eq. (7), we define [10]

£ = r+ju,

no= y+j 9) anglela + ng [cf. Eq. (13)] for all different cases.
4.1 First-order moments
f@) = exp(—ja)é For the first-order moments we get 2 sets of equations,
_ N (10) cf. Table 1: 2 equations for theandu moments,
n(B3) exp(—jB)n,
1000, 3) ] [ H1000 }
- R , 16
and [ totoo(c; 3) () Ho100 (16)
bopa(a) = )M (a)F = €(a)PFE(a) and 2 equations for thgandv moments,
mn — m4n, no_ 2m Q n,
N2m.n(8B) n(B) n*(B) In(B)[*"n( )(11) [Moom(aaﬁ) } _ R { L0010 } a7
pooor (v, ) pooor |’
with k,1,m,n > 0. With &g, ;(0) = &5, @and gy, ., (0) = which constitute 4 equations for the 4 first-order moments.
N2m,n, We then have Note that the following two expressions
2 2
Eor1(@)M2mn(B) = exp[—jlla+nB)) ar.iMam.n Méooo + Ngmm (18)
€2k7l(04)77§m,n(5) = eXp[_j(la_nﬁ)]€2k,ln§m,na Hoo1o Tt Hooo1s (19)

12) are invariant under fractional Fourier transformation.



4.2 Second-order moments
For the second-order moments we get 3 sets of equations
cf. Table 1: 3 equations for theandu moments,

2000 (0, B) + o200 (e, B) = p2000 + Ho200,

|

4 equations for the mixed moments,

|

t2000(cv, 3) — pozoo (e, B) |
2p1100(e, B)

=R(2a)

H2000 — H0200

20
2411100 ]’ (20)

M1010(Oé,5) - M0101(04,5) ]
001 (@, B) + porio(a, B) |

Rm+ﬁﬂ

H1010 — Ho101
H1001 + Ho110

|

M1010 + Ho101
— 1001 + Ho110

|

pio10(e, B) + poto1(a, B)
— 1001 (v, B) + poro(a, )

—R(a-9) |

|

and 3 equations for theandv moments,

] , (21)
u0020(a7 ﬂ) + Moooz((% ﬁ) = 0020 + 140002,
tooz20 (e, ) — poooz(a, 3) }
2p0011 (e, B)
—re9)|

H0020 — H0002
2p0011

y (22)

which constitute 3+4+3=10 equations for the 10 second-
order moments. Note that we have the following 2+2+2=6
invariants, which can be directly derived from Table 1 (or
from these 3 sets of equations):

H2000 + 0020, (23)
(12000 — H0200)° + 4443100, (24)
(11010 — Ho101)® +  (H1001 + Ho110)?, (25)
(11010 + po101)® 4+ (—H1001 + fo110)?, (26)
H0020 + 0002, (27)
(o020 — Ho002)® + 4or1- (28)

4.3 Higher-order moments

For higher-order moments we can proceed analogously,
using the expressions given in Table 1. For the third-order
moments we get 4 sets of equations, yielding 4+6+6+4=20
equations for 20 variables, and 2+3+3+2=10 invariant
combinations of third-order moments. For the fourth-order
moments we get 5 sets of equations, yielding 5+8+9+8+5=35
equations for 35 variables, and 3+4+5+4+3=19 invariant
combinations of fourth-order moments.

5 Conclusions

'We have shown how the general relationship that relates
the WD moments of arbitrary order in the input plane
and the output plane of an anamorphic fractional Fourier
transform (FT) system, can be broken down into a number
of rotation-type relationships between certain combinations
of the moments. Because of the rotation-type character of
these latter relationships, they lead immediately to a number
of moment combinations that are invariant under anamorphic
fractional Fourier transformation.
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Table 1: Moment combinations undergoing a rotation of the form of Egs. (13) up to fourth order

[ t(a, B) ] — R(la £ np) [ t(0,0) ] _ { cos(la £ nf) sin(la+np) ] [ t(0,0) ]
bla,B) | b(0,0) | | —sin(latnp) cos(la+np) 5(0,0)
| top vector entry ¢ | bottom vector entry b | angle la £nj |
11000 10100 0%
10010 H0001 B
12000 + 140200
H2000 — H0200 2p1100 2
H1010 — H0101 K1001 + Ho110 a+f
H1010 + Ho101 —H1001 + Ho110 a—f
0020 + 140002
H0020 — H0002 210011 243
13000 + 141200 12100 + 10300 e}
H3000 — 3441200 342100 — Ho300 3a
2010 + H0210 2001 + H0201 B
12010 — H0210 — 2{41101 H2001 — Mo201 + 241110 2a+
H2010 — H0210 + 2p1101 — 2001 + H0201 + 2[1110 2a —f8
H1020 + 141002 o120 + Ho102 o
11020 — H1002 — 2f40111 2p1011 + po120 — H0102 a+20
11020 — M1002 + 2p0111 —2p11011 + H0120 — H0102 a—243
o030 + o012 10021 t+ 10003 B
Ho030 — 30012 310021 — H0003 33
4000 + 2/42200 + [10400
H4000 — ££0400 2p3100 + 2441300 2a
Ha000 — 6442200 + f0400 43100 — 411300 da
3010 + H1210 — H2101 — H0301 13001 + #1201 + #2110 + H0310 a+f
3010 + 1210 + H2101 + Ho301 —H3001 — H1201 + H2110 + Ho310 o —
H3010 — 3Ht1210 — 32101 + Ho301 #3001 — 31201 + 32110 — Ho310 3a+
13010 — 3Ht1210 + 32101 — Ho301 — 143001 + 341201 + 342110 — H0310 3a—p3
12020 + H2002 + 0220 + 10202
H2020 — [2002 + H0220 — H0202 2p2011 + 2p0211 25
H2020 + /42002 — H0220 — H0202 2p2120 + 2p41102 2a
12020 — H2002 — H0220 + Ho202 — 41111 | 202011 — 240211 + 2141120 — 241102 2a + 203
12020 — [2002 — H0220 + Ho202 + 41111 | —2p2011 + 2p0211 + 211120 — 21102 | 200 — 203
1030 + H1012 — Ho121 — H0103 #1201 + H1003 + Ho130 + Ho112 a+fg
#1030 + 1012 + o121 + Ho103 —H1201 — H1003 + H0130 + Ho112 o —
H1030 — 31012 — 30121 + o103 311201 — H1003 + 10130 — 340112 a+ 30
#1030 — 3ft1012 + 30121 — 0103 —3p1201 + H1003 + Ho130 — SHo112 a—3f
Ho040 + 2H10022 t+ 10004
140040 — H0004 210031 + 2400013 2/
Hoo40 — 610022 + Ho004 4110031 — 4110013 443




