
A PIPELINED SYSTOLIC ARCHITECTURE FOR THE
HARDWARE ORIENTED REGION BASED MOTION

ESTIMATION ALGORITHM

Andrea Fermo and Giovanni L. Sicuranza
Universit̀a degli studi di Trieste

DEEI
Via Valerio 10, 34127 Trieste, Italy

fermo@ipl.univ.trieste.it

Vojko Pahor
Telit Mobile Terminals S.p.A.
V.le Stazione di Prosecco 5/B
34014 Sgonico, Trieste, Italy

vojko.pahor@telital.com

ABSTRACT

Motion estimation is a fundamental step for high quality, low
bandwidth video compression. Recently the MPEG-4 group
has proposed some low complexity algorithms. They have
almost the same performance in term of PSNR of the Full
Search algorithm, but at the same time the complexity is dra-
matically reduced. However it is difficult to realize these al-
gorithms with conventional hardware structures. For this rea-
son we presented a Hardware Oriented Region Based algo-
rithm (HORB) with similar performances, but that can be im-
plemented with a simple hardware structure. Here we present
an architecture tailored to meet the design constraint of the
HORB algorithm (and at the same time capable of realizing
the Full Search algorithm).

1 INTRODUCTION

Mobile video communication and in particular videophone
will be enabled by the third generation mobile networks and
terminals. The videophone will require a digital video en-
coder integrated on the mobile device. The digital video en-
coder must meet two fundamental constraints: low bit rate
(because of the limited bandwidth of the radio channel) and
low power (in order to save the battery life of the device).
Both of them can be accomplished by accurately designing
the motion estimation step. On one hand, it may take up to
80% of the total computational power of the encoder and,
on the other hand, it has to guarantee the achievement of a
good visual quality. Full Search (FS) technique is capable of
good performances in terms of video quality and bit rate effi-
ciency, but it leads to a high computational complexity that is
not compatible with a real-time low-power application. Re-
cently, some new low complexity algorithms have been pro-
posed [1], [2]. They have almost the same performance in
terms of PSNR of FS algorithm, but at the same time their
complexity is dramatically reduced. However, it is difficult
to implement these algorithms with conventional hardware
structures. On the contrary, to meet the intensive compu-
tation demands, developing custom hardware gives superior
performances to general purpose microprocessor implemen-
tation. For this reason we have presented [3] a hardware ori-
ented algorithm that has very good performances, and is real-
izable with a simple hardware structure. Through a joint op-

timization of the motion estimation algorithm and the related
architecture, the power consumption can be further lowered.
For this reason, here we present an architecture tailored to
meet the design constraint of the HORB algorithm.
In Sections 2 and 3 we briefly review known motion esti-
mation algorithms and their hardware architectures. In Sec-
tions 4 and 5 we present our algorithm and the architecture
we propose to implement this algorithm. In Section 6 we
present some simulation results and finally in Section 7 our
conclusions.

2 MOTION ESTIMATION ALGORITHMS

The motion estimation task is accomplished by subdividing
the current frameX into M macroblocks (MBx) and by mini-
mizing the Sum of Absolute Differences (SAD) between the
pixels of each MBx with those of the MBy belonging to the
previous frameY. The SAD of themth MBx of size16× 16
located at(i0, j0) in the current frame, compared to a MBy
located at displacement of(h, k) relative to MBx is defined
as:

SAD(h, k) =
15∑

i=0

SAD(h, k)line(i) (1)

SAD(h, k)line(i) =
15∑

j=0

|Xcurr(i0 + i, j0 + j)−

−Yprev(i0 + i + h, j0 + j + k)| (2)

Usually the investigation is made over a bound limited search
area (usually[−16, 15]). At every point(h, k) of this area
corresponds a motion vector (MV) that indicates the dis-
placement with respect to the actual MB. The FS method ex-
haustively evaluates all possible points within a search range
in the previous image frame in order to find the MBy with the
minimum SAD value (SADmin(m)). Although yielding an
optimal performance, this method has an enormous compu-
tational complexity, which could take up to 80% of the total
computational power of the encoder. For this reason some
low complexity algorithms have been proposed in literature,
such as Three Step Search (TSS) [4], Hierarchical Search [5],
Block-Based Gradient Descent Search (BBGS) [6], but they
lead to a visual quality significantly lower than FS.

1

Recently some new algorithms had been proposed in lit-
erature, that lower significantly the computational complex-
ity even keeping the good visual quality. In particular, Ad-
vanced Predictive Diamond Zonal Search (APDZS) [1] starts
the search in the center of the search area and then moves
along a spiral path, stopping the search when the result is
good enough, by implementing a threshold test after every
SAD calculation. In Motion Vector Field Adaptive Fast Mo-
tion Estimation (MVFAST) [2] instead, the search center is
chosen based on some local motion activity measures and
then a local search is performed around the search center to
obtain the motion vector for the current MB. The implemen-
tation of these two algorithms however is difficult because of
their lack of data regularity and because of the complexity of
the control structure.

3 HARDWARE ARCHITECTURES

To achieve high throughput, a high number of operations
must be carried out simultaneously. This can be reached
through massive use of parallel processing and pipelin-
ing. Array processors are computational networks with dis-
tributed data storage and distributed Processing Elements
(PEs). Systolic arrays are array processors with synchronous
clocking and synchronous control signals. Systolic arrays
for a given algorithm can be derived by the methodology
proposed by Kung [7]. In [8] the fundamentals of 1D and
2D systolic arrays are presented. In [9] the reuse of data is
enlarged by the use of a large set of shift registers in order
to limit the I/O bandwidth. In [10] this result is achieved
with a more sophisticated scheme that prevents the pipeline
stalls. [11] presents an architecture that eliminates unneces-
sary computations by suspending the activity of processing
elements during the computation of distortion values, as soon
these values become greater than the minimum distortion cal-
culated so far. Such ideas are the basis of the architecture
described in this paper.

4 HORB ALGORITHM

1

2 2

2

222

2

2

3 3 3

3

3

3

33333

3

3

3

3 3

Figure 1: Subdivision of the search area in 25 regions (the
number represents the group to which each region belongs).

We have proposed in [3] a Hardware Oriented Region
Based algorithm (HORB) based on the same assumptions
that have led to APDZS. Nevertheless we introduced some
important modifications in order to make it easily realizable
by a systolic array approach, without affecting the complex-
ity reduction in terms of SAD points calculated.

Figure 2: Search path among the regions.

4.1 No-Motion Detection
First of all, a pixel by pixel comparison is made between the
actual MBx and the central MBy of the search area. The
comparison is made considering only the first 5 Most Signif-
icant Bits (MSB) of every pixel in order to filter out the noise.
During this comparison the pixels matching are counted. If
the matching pixels are more than70%, the MBx is chosen
to be a stationary block and the search is halted.

4.2 Core of the HORB algorithm
In HORB algorithm, the entire search area is divided in 25
search regions of three groups as shown in Fig. 1. In every
region (starting from the center region) an exhaustive search
is made as a full search on a limited search area. For the
first region, the algorithm equation is the same as in Eqs.
(1,2), withh, k = −3, ... + 3. Once finished the search over
the first region, the minimum SAD found is compared to a
threshold, and it is decided whether to continue or to stop
the search. In the former case, the region of group 2 that is
closest to the location of the minimum SAD found in region
1 is selected (2). Then another search is made on this region,
and on the regions of the same group, following the path of
Fig. 2 until the threshold test condition is true. Finally, if
the test always fails, the regions of the third group are con-
sidered. The main difference between this algorithm and the
zonal searches (APDZS) is that instead of a pixel by pixel
spiral search that leads to an irregular data flow, we employ
a region by region spiral search that can be seen like many
FSs over small regions. For this reason this algorithm can
be implemented by a systolic array approach. The key for a
good trade-off between computational saving and the quality
of estimation is the determination of the threshold value. The
proposed threshold calculation is different from the APDZS
approach: here the threshold value depends on the distance
from the center region:

T = SADav ∗ (10− i)/5 (3)

where i = 1, 2, 3 indicates the group to which the region
belongs andSADav is the averageSADmin obtained in all
the previous MBxs.

4.3 Partial SAD Criterion
Finally, another criterion is considered: it consists on the in-
troduction of another threshold test after everySADline(i)

2

calculation. If the partial SAD is too high, the calculation is
halted. We have proposed a threshold:

T2 = SADav ∗ (n + 5)/8 (4)

wheren is the number of rows already calculated.
Using this criterion the complexity significantly decreases.

X_AGU

Y_AGU

CONTROL UNIT

NO MOTION DETECTION
 UNIT

 UNIT

 C_AGU MOTION ESTIMATION

CACHE MEMORY

Y:

ACTUAL

X:

FRAME

PREVIOUS

FRAME

Figure 3: Scheme of the processor.

5 PROPOSED ARCHITECTURE

XOR_ARRAY

5 INPUT NOR

COUNTER THRESHOLD
COMPARATOR

Y PIXELSX PIXELS

DECISION

Figure 4: Scheme of the No Motion Detection Unit.

In Fig. 3 we can see the general scheme of the processor
and the two distinctAddressGenerationUnits (AGUs) that
address the pixels related to the current frame and the previ-
ous one.
First the No −MotionDetectionUnits (NMDU) module
(see Fig. 4) is activated and then if the motion is decided
to be on, theMotionEstimationUnit (MEU) module is en-
abled.
HORB algorithm can be implemented by any of the systolic
array architectures that have been proposed recently. How-
ever, the implementation of a FS over a windoww × w is
more efficient as the sizew of the window is larger because
there is greater reuse of consecutive pixels. A linear array
of N Processing Elements (PEs) takes N cycles to be filled
using only input data, and then there arew useful cycles, un-
til the array must be refilled with a new line. The efficiency
decreases asw become lower. In order to avoid the pipeline
stalls, a more complex design must be considered [10]. For
this reason we have developed a linear architecture tailored

COMP

SADline

SAD

THRESHOLD

PARTIAL SAD

BANK

STERS
REGI

OF
COMPARISON

SAD

DELAY LINE 1 DELAY LINE 2

MV

MULTIPLEXER

ADDER TREE

CACHE

X_bus

Figure 5: Scheme of the architecture proposed.

to meet the constraints of the HORB algorithm. The data
related to the previous frame (Y) are entered into an inter-
nal cache memory, and then handled by another AGU that
control the dataflow to the MEU.

PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE PE

Figure 6: Scheme of the adder tree.

This module (see Fig. 5) consists of an adder tree fed by
two delay lines, 16 taps long, in which Y pixels are entered
serially. In each delay line a different line is entered. It
takes 8 cycles to fill the pipe, because of the two inputs to
each delay line. When a pipe is full, the data are entered
into the 16 PEs, where the absolute differences between
pixels are computed, and the results are summed by the
adder tree (see Fig. 6). Therefore, a singleSAD(h, k)line

can be calculated on every cycle, due to the pipelining of
the different stages of the adder tree. Then another pixel
is entered into the pipe and all other data are shifted to the
right. So, at every cycle the same data are used to calculate
another partialSAD(h, k)line related to a neighbouring
MV with different k, and it takes 7 cycles to calculate all
the SAD(−3, k)line(1) with k = −3, ... + 3. Then the
SAD(−2, k)line(1) is considered: the related data are
already loaded into the second delay line that can be filled

3

PSNR(FS) PSNR(HORB) Av. Power (%)
FOREMAN 30.30 30.18 15.6
MISS AMERICA 41.39 41.25 10.1
CARPHONE 30.53 30.50 12.2

Table 1: Simulation results for 3 different QCIF (15 Hz)
video sequences coded at 48 Kbit/s.

while the other pipe is feeding the data into the calculation
module.
Every SAD(h, k)line(1) obtained is stored in the bank of
registers, and tested with the threshold (by the Partial SAD
unit), and if the value is too high, the next computations
related to thath, k are disabled as in [11]. It is worth
noting that while in [11] the entireSAD is calculated for
a line of the search area, before considering the other lines
(thus having to reload completely the X data), we calculate
first the SADline(i) of all the pixels of the region before
considering theSADline(i +1), thus X data are loaded only
once and the power consumption is reduced. This can be
done because we use a Partial SAD Criterion quite different
from that used by [11].
Once finished the calculation of all the Partial
SAD(h, k)line(1) for h = −3, ... + 3 andk = −3, .. + 3,
the X data, that have been stored in the meantime, through
the dedicatedX busin theXnext registers (see Fig. 7), pass
to theXact registers and the processor is immediately able to
calculate theSAD(h, k)line(2). These results are summed
to those stored in the bank of registers, an so on.
In case of a pure FS algorithm (without the Partial SAD
Criterion), a modified architecture has to be considered,
without the Partial SAD module and the data are fed into the
two delay lines in different order. As a consequence in this
case we first calculateSAD(−15, k)line(1) for all k, then
SAD(−14, k)line(1), and so on.

YX

PE
|X−Y|

Xact

Xnext

Figure 7: Scheme of the Processing Element (PE).

6 EXPERIMENTAL RESULT

We have modelled our architecture in VHDL language. It can
realize both FS and HORB algorithms. The minimum clock
frequency necessary to implement the algorithms in QCIF
sequences at 15 fps is of 26 MHz. CIF sequences need 100
MHz. The MVs found with this module are then entered to
a software video coder. We have performed the simulation
for both these algorithm considering three different video se-

quences. In case of FS we have chosen the modified architec-
ture. We have evaluated the power consumption as in [11],
for both FS and HORB. In Table 1 we present the results in
terms of PSNR and of percentage of power consumption re-
ferred to FS. As we can see, the video quality is almost the
same, while the power consumption is extremely reduced by
the use of our algorithm.

7 CONCLUSIONS

In this paper we have presented an architecture for low power
real time motion estimation tailored to our HORB algorithm.
The joint analysis of the HORB algorithm and the proposed
architecture outlines the significant reduction of power con-
sumption achieved.

References

[1] A.M Tourapis and O.C. Au, ”New Result on Zonal Based Mo-
tion estimation Algorithms-Advanced Predictive Diamond
Zonal Search”,Proc. of Int. Conf. of Circuits and Systems
ICCS-01, pp.512-516, Sidney, May 2001.

[2] P. I. Hosur and K.K. Ma, ”Motion Vector Field Adaptive Fast
Motion Estimation,”Second Int. Conf. on Information, Com-
munications and Signal Processing (ICICS 99), pp.384-388,
Singapore , 7-10 Dec. 1999.

[3] A. Fermo, V. Pahor and G. Sicuranza, ”Hardware-Oriented
Region Based Algorithm for Low Power Motion Estimation”,
Proc. of ISPA-01, pp.283-287, Pula, Croatia, June 2001.

[4] R. Li, B. Aeng and M.L.Liou,”A New Three Step Search for
Block Motion Estimation”,IEEE Trans. Circuits Syst. Video
Technol., vol. 4, pp. 438-442, Aug. 1994.

[5] K.M.Uz, M.Vetterli and D. LeGall, ”Interpolative Multireso-
lution Coding of Advanced Television with Compatible Sub-
channels”,IEEE Trans. Circuits Syst. Video Technol.vol. 1,
pp.86-99, Mar 1991.

[6] T. Oscal and C. Chen, ”Motion Estimation using a One Di-
mensional Gradient Descent Search”,IEEE Trans. Circuits
Syst. Video Technol., vol. 10 no.4, pp 608-616, June 2000.

[7] S. Y. Kung, ”VLSI Array processors”,Prentice Hall, 1988.

[8] T. Komareck and P. Pirsch, ”Array Architectures for Block
Matching Algorithms”, IEEE Trans. Circuits and Syst, vol.
36, pp.1301-1308, Oct. 1989.

[9] C.H. Hsieh and T.P. Lin, ”VLSI Architecture for Block
Matching Motion estimation Algorithm”,IEEE Trans. Cir-
cuits Syst. Video Technol.vol. 2, pp.169-175, June 1992.

[10] H. Yeo and Y.H.Hu, ”A Novel Modular Systolic Array Ar-
chitecture for Full Search Block Matching Motion Estima-
tion”, IEEE Trans. Circuits Syst. Video Technol., vol. 5, N. 5,
pp.407-416, Oct. 1995.

[11] L. Sousa and N. Roma, ”Low Power Array Architectures for
Motion Estimation”,Proc. Int. Workshop on Multimedia Sig-
nal Processing, pp.247-251, Copenhagen, Sept. 1999.

4

