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ABSTRACT 

Nonlinear analysis of HRV, particularly the fractal 
dimension and 1/f beta parameters, has been recognized to 
provide valuable information in the prognostic 
classification of cardiac patients. The reproducibility of 
these methods, however, is not known. In this study we 
addressed these issues in a population of chronic heart 
failure (CHF) patients. We analyzed 3 ECG Holter 
recordings from 22 clinically stable CHF patients by 1/f 
log scaling of power spectrum and the fractal dimension of 
the HRV curve, assessing the reproducibility of each 
index. Our results show that Fractal dimension parameter 
exhibits similar reproducibility and a higher reliability than 
both 1/f and spectral parameters. Moreover, we found that 
fractal dimension index is quite correlated with 1/f slope 
and describe possibly complementary aspects of heart rate 
dynamics. 

 

1 INTRODUCTION 

The analysis of heart rate variability (HRV) is a well-
recognized tool in the investigation of the autonomic 
control of the heart [1]. Moreover, definitive evidence has 
recently been provided on the independent prognostic 
value of HRV with respect to well-established risk 
stratifiers such as depressed left ventricular function and 
frequent ventricular arrhythmias [2].  

Although most studies on HRV have been performed 
using time- and frequency-domain linear methods, it has 
been suggested that nonlinear analysis of HRV might 
provide valuable information for the physiological 
interpretation of heart rate fluctuations and for the risk 
assessment of cardiac patients [1]. Among the numerous 
non-linear parameters related to the fractal behaviour of 
the HRV signal, two classes have gained wide interest in 
the last years: that based on the 1/f-like relationship, 
starting from the spectral power [3-7], and that based on 
Fractal features. The latter has traditionally been 
approached following the chaos-theory field and it aims to 

model the attractor extracted from HRV sequences [8] or 
to estimate the fractal dimension (FD) calculated from the 
beta exponent [9]. 

However, the fractal dimension can be also extracted 
directly from the HRV sequence by means of many 
methods [10-12] thus measuring the characteristic signal 
variability. In this work we used this approach, utilizing 
the fractal dimension estimated by means of the Higuchi 
method. In this way a better estimation of this parameter 
was obtained because the errors due to the indirect 
estimation of DF from the beta exponent are eliminated 

This study was conceived to appraise the reliability and 
reproducibility of 1/f and FD parameters and assess their 
mutual relationship. These two aspects are of great 
importance in making decisions about their inclusion in 
clinical trials and experimental studies.  

 

2 METHODS 

2.1  Studied population 

We studied 22 patients (62 ± 9 years old, male) with 
clinically stable CHF (Weber C class), in sinus rhythm. All 
patients selected showed a left ventricular ejection fraction 
at rest <40% evaluated by a radionuclide angiography. 

All patients were under stable therapy since at least 3 
months with ACE-inhibitors and furosemide; 11 patients 
took digoxin and 18 nitrates. No patients were under beta-
blockers  or calcium-antagonist therapy. In order to assess 
short- and long-time reproducibility, all patients underwent 
three 24-hour ECG Holter recordings spaced 2±1 days 
between first and second recording (short-time) and 96±26 
days between first and third recording (long-time). 

2.2  Holter analysis 

For all CHF and normal subjects, twenty-four-hour 
ambulatory ECGs were recorded with a portable three-
channel tape recorder and processed with Marquette 8000 
T system. 



All recordings were performed while the patients were 
allowed to standing or sitting next to their beds. Other 
activities were not allowed. In order to be considered 
eligible for the study, each recording had to have at least 
12 hours of analyzable RR intervals. Moreover, this period 
had to include at least half of the nighttime (from 00:00 
AM trough to 5:00 AM) and half of the daytime (from 
7:30 AM trough to 11:30 PM) [13]. 

Each beat was labeled as normal or aberrant according 
to recognition by the algorithm for tape analysis and after 
an investigator's verification. 

2.3  1/f  analysis 

This technique derives from the underlying power-law 
behavior exhibited by long-time HRV time series. Studies 
have shown [3-7] that the spectral density function of 
HRV decreases approximately as the reciprocal of 
frequency, and it can be easily described in a log-log scale 
by the intercept and slope of the regression line over 
approximately two decades of frequency (10-4,10-2 Hz) 
(Fig. 1). 

It has been shown that the slope and intercept of 1/f log-
scaling of Fourier spectra are substantially influenced by 
the autonomic input to the heart and that the combination 
of both indexes was an excellent predictor of death after 
myocardial infarction [4]. 

According to these works, for each patient, the RR time 
series was automatically corrected for ectopic beats and 
resampled at 2 Hz by cubic spline interpolation. 

Data were then FFT transformed and the resulting 24-
hour power spectrum was obtained. Linear regression 
analysis between log(power) and log(frequency) was 
performed on the portion of the power spectrum between 
10-4 and 10-2 Hz, and the slope and the intercept at 10-4 Hz 
were computed. 

2.4  Fractal dimension analysis 

 The Higuchi's algorithm [11] is based on the measure 
of the mean length of the curve L(k) by using a segment of 
k samples as a unit of measure. From a given time series 
X(1), X(2), ... X(N), the algorithm constructs k new time 
series; each of them, Xmk, is defined as 

 

Xm
k
: X(m), X(m+k), X(m+2*k), .. , X(m+int((N-m)/k)*k) 

 

where m=1,2,...,k and k are integers indicating the 
initial time and the interval time, respectively. 

Then the length, Lm(k), of each curve Xmk is calculated 
as  

 

Lm(k) =�^��i=1,F) ��;�P�L*k)-X(m+(i-1)*k))*(N-1)/(F*k)} ��N (1) 
 

where F=int((N-m)/k, N is the total number of samples 
and the term (N-1)/(F*k) is a normalization factor. Thus 
Lm(k) represents the normalized sum of the segment 

lengths which join pairs of points distant k samples, 
starting from the m-th sample, X(m), with m=1, 2, ... k.  

 Finally, the length of the curve for the time interval k, 
L(k), is calculated as the mean of the k values Lm (k) for 

m=1, 2, ..., k. If the L(k) value is proportional to k-D, the 
curve is fractal-like with the dimension D. Then, if L(k) is 
plotted against k, for k ranging from 1 to kmax, on a 
double logarithmic scale, the data should fall on a straight 
line with a slope equal to -D. Thus, by means of a least-
square linear best-fitting procedure applied to the series of 
pairs (k, L(k)), obtained by increasing the k value in (1), 
the angular coefficient of the linear regression of the graph 
ln(L(k)) vs. ln(1/k), which constitutes the D estimation, is 
evaluated. 

Studies have demonstrated that the complexity 
measured by a fractal dimension is reduced in some 
pathologies [9, 14]. 

Only tracts of at least 250 consecutive QRS complexes 
normally classified were considered in the analysis 
excluding RR intervals immediately preceding or 
following not normal beats. 
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Figure 1: Power law behavior and 1/f log scaling regression 

2.5  Spectral analysis 

To compare the reproducibility values of the previous 
non-linear techniques with those of the traditional linear 
techniques, we performed also spectral analysis by custom 
software [15] on 5 minutes RR sequences extracted from 
24-hours holter recordings. 

Sequences containing artifacts or large transients or 
containing over 5% of ectopies were discarded, while the 
few ectopic beats eventually present in accepted sequences 
were automatically corrected by an interpolating 
algorithm. 

Power spectral density was estimated by the Blackman-
Tukey method in all accepted segments after linear trend 
removal. The total power (TP) and the power in the low 
frequency band (0.04-0.15 Hz) and high frequency band 



(0.15-0.45 Hz) were then computed by numerical 
integration. The latter two powers were finally transformed 
into normalized units dividing them by their sum. 

Being complementary measurements, only the total 
power and the normalized high frequency power (HFnu) 
were considered in the study. 

2.6  Statistical analysis 

Shapiro-Wilk statistic was used to test the normality of 
the distribution of all variables applying the appropriate 
transformation in case of violation. 

To assess the clinical stability of the patients during the 
study period, the variables describing the hemodynamic 
status, neurohormonal activation and exercise performance 
were analyzed by a repeated measures ANOVA. 

Short- and long-term reproducibility of HRV indexes 
were first assessed testing for systematic changes by a 
paired t-test. To quantify the reproducibility, we used the 
standard error of measurement (SEM) [16] after 
normalization by the mean of observed values. 

The SEM, which was computed as the root mean square 
error of the 1-way random effects ANOVA on short-term 
and long-term paired measurements, has the following two 
uses. 

First, if a single measurement is taken on a given 
subject, an approximate 95% confidence interval for the 
patient's underlying steady-state value can be obtained as 
X±1.96· SEM, where X is the observed measurement. 

Second, if one observes a change in a patient's index 
after a period of treatment, then to be 95% confident that a 
real change has occurred the absolute difference between 
the 2 measurements has to be at least 2.8 times the SEM 
[16]. 

From the same 1-way analysis of variance the intraclass 
correlation coefficient (ICC) was derived. This statistic is 
the fraction of the total observed variability of a given 
measurement that is due to the variance of the patients’ 
steady state values, and is an index of reliability of 
measurements [16]. An ICC below 0.4 is commonly 
considered to represent poor reliability, whereas above 
0.75 is considered to represent excellent reliability. Fair or 
good is in between [16]. 

All hypothesis tests (two-tailed) were performed at the 
0.05 significance level. 

 
3 RESULTS 

As shown in Tab. 1, patients maintained relatively 
clinical stable conditions during the study period, with just 
a small variation in their VO2max during exercise tests 
while the Left Ventricle Ejection Fraction (% LVEF) and 
the Norepinephrine values show not significant differences 
among the studies. 

Considering the short-time reproducibility, it can be 

seen (Table 2) that for fractal dimension and 1/f intercept 
the SEM remains within the 3.4% of the mean, while it is 
about four times bigger for the 1/f slope and ranges 
between 4% and 9% for spectral parameters. 

In the long-time analysis, the SEM of fractal dimension 
as well as of the power law and of the frequency-domain 
parameters were substantially similar to those of short-
time. 

 
Table 1. Assessment of the clinical stability of the 

patients during the study period by ANOVA test. 

 Study 1 Study 2 Study 3 p 

LVEF (%) 28.8±6.6  29.2±5.7 0.38 

Norepinephrine 387±169 397±165 409±175 0.17 

VO2max 12.09±2.2 12.36±1.7 12.9±1.81 0.038* 

 
The ICC values, in the short-time situation, show that 

FD and spectral parameters present an excellent reliability 
while the 1/f indexes have only a poor grade. 

In the long-time situation, ICC remains similar to that 
of the short-time case for FD and power spectral 
parameters while it sensibly changes, with opposite sign, 
for the 1/f slope and intercept parameters (Table 2). 

 
Table 2. Mean value and SD of all parameters, short- 

and long-time normalized SEM and ICC in CHF patients. 

 

Mean SD 

SEM
% 

Short
-time 

SEM
% 

long-
time 

ICC 
 

Short
-time 

ICC 
 

Long
-time 

P 
 

Short
-time 

P 
 

Long
-time 

FD 1.74 0.14 3.39 3.85 0.78 0.77 0.92 0.55 

Slope -1.55 0.30 14.29 11.39 0.38 0.72 0.28 0.79 

Int 7.29 0.27 2.59 3.53 0.40 0.12 0.36 0.97 

TP 2067 2168 4.13 3.99 0.90 0.91 0.79 0.98 

HFnu 0.4 0.1 9.09 10.33 0.78 0.72 0.63 0.99 

 

Table 3. Mean values of the correlation coefficients 
between 1/f and FD parameters. 

  FD 

Slope r -0.75 

Intercept r 0.23 

 



Mean values among the three studies of the correlation 
coefficients between 1/f parameters and Fractal dimension 
are shown in Tab. 3. FD parameter was not correlated with 
1/f intercept while it is correlated with the slope. 

4 DISCUSSION 

The p-values in Table 2 show that, both for short and 
long-time situations, for all the parameters the differences 
among the three studies are not significant. Moreover, the 
ICC values (Table 2) indicate that the FD and the spectral 
parameters are reliable for short and long-time analyses 
while the 1/f intercept was not and the 1/f slope shows a 
good reliability only for long-time evaluation. 

The SEM% results show that Fractal dimension 
parameter as well as the 1/f intercept had a good short-
time reproducibility, with a SEM under 3.4% of the mean 
of observed values. Comparatively, the reproducibility of 
spectral parameters and 1/f slope, is much worse. 

In the long-time evaluation, the reproducibility of FD 
parameter as well as of spectral parameters and of 1/f 
indexes does not show substantial changes. 

In summary, FD index appears to be more reliable than 
1/f indexes and with a reproducibility level comparable to 
that of the total power and the 1/f intercept. Hence, it 
seems more suitable to be used in clinical applications 
than the 1/f indexes and slightly better than the spectral 
parameters. 

The correlation between FD and 1/f slope parameter 
confirms a link between the two indexes though the 
evaluation of FD from the 1/f slope does not appear a 
reliable procedure, particularly in the short-time analysis 
when 1/f slope shows a low ICC and a large SEM%. 

It is thus likely that the FD describes different and, 
possibly, complementary aspects of HRV with respect to 
1/f indexes. 

In conclusion, our study suggests that fractal dimension 
parameters obtained from morphologic quantification of 
HR Variability, directly in the time series sequence, can 
give additional information with respect to 1/f and power 
spectral parameters and hence it could be considered for 
future risk assessment studies of chronic heart failure 
patients. Furthermore, care must be taken in using certain 
parameters, especially the 1/f slope parameter, due to their 
poor reproducibility. 
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