Local Optimization of Index Assignments for Multiple
Description Coding

Jean Cardinal*

ABSTRACT

Index assignment problems are central to many joint
source-channel coding methods and generally require a
lot of computational power. We study the optimization
of index assignment matrices for the multiple description
coding problem. Index assignment matrices are used at
the quantization step and provide a conceptually simple
and fast alternative to multiply descriptive transform
methods. We describe two novel local optimization al-
gorithms using a bipartite matching procedure to locally
minimize the expected mean squared error. We provide
experimental results on various codebooks as well as a
comparison with a previously published optimization al-
gorithm.

1 Introduction

Multiple description coders are designed to send pairs
of redundant descriptions of a signal to combat packet
losses in networks or channel impairments in diversity
systems. In this paper, we describe new methods for
the design of multiple description codes based on un-
constrained vector quantizers. We assume the existence
of a single-description quantizer codebook in R¥ and an
encoder o mapping the input random variable X on the
index 4 of the best (in some rate-distortion sense) repro-
duction vector in the codebook. We define a transcoding
step in which the codevector index is translated into a
pair of lower-range indices, or descriptions. This step
is designed to minimize the distortion under the loss of
one of the two descriptions.

More precisely, given an index ¢ in the codebook
C = {y;}Y, C R*, we wish to define an injective in-
dex assignment (IA) function

F:{1,2,.. . Ny = {1,2,...,m} x {1,2,...,n2}, (1)
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with N > njns, that can be used to identify y; using two
communication channels with rates logn; and logns,
respectively. It is convenient to represent the mapping
f by an assignment matriz containing the indices and
whose rows and columns are indiced by the values fi (%)
and f»(i), respectively. Since the mapping f is injective,
it may happen that some description pairs are not used.
In that case, a dummy value can be put in the matrix.
The value 1 i

BTN @)
is the redundancy of the assignment. It is the number of
additional bits per sample that are used to protect the
transmission against description losses. Note that we
can use entropy coding to reduce the bitrate requirement
on the two channels.
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Figure 1: Block diagram of the transmission scheme

We define the objective function to minimize as the
mean squared error (MSE) incurred when the codevec-
tor y; is estimated from a single description. The mini-
mum MSE estimation of y; given, say, f1() is the aver-
age of all the codevectors {y;} such that fi(j) = f1(i).

Let us denote by R; C C the set of codevectors y; such
that f1(j) = and by C; C C the set of codevectors y;
such that fo(j) = . Then the MSE can be written

MSE = %LN (; var(R;) + Zvar(Cz-)> (3)

where

var<5)=2||y—§zxn2. (4)
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An example of TA is shown on Fig. 2(a), together with
the corresponding codebook of size 10. The two code-
vector sets corresponding to f1(i) = 2 and f2(i) = 4 are
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Figure 2: Example of an TA and the subsets Ry and C,
in the input space

shown. The TA should minimize the average variance
of such sets. Note that we make implicit use of a uni-
formity assumption over the codevectors. It is rather
simple, however, to generalize the above criterion using
a probability mass function over the codebook indices.
This problem can be shown to be NP-hard by a reduc-
tion to the minimum-variance clustering problem.

A great deal of work has already been devoted to the
design of good index assignments in the case k = 1. The
objective function is generally replaced by a simpler one
of the form:

min

max i— 7. 5
f i,j:f1(i)=f1(j)\/f2(i)=fz(j)| ]| ( )

This is equivalent to the Minimum Graph Bandwidth
problem, which is NP-hard in general, for some special
graphs defined by the assignment matrix. The Min-
imum Graph Bandwidth problem consists in ordering
the vertices of an arbitrary graph so that the maximal
difference between the indices of two adjacent vertices
is minimal. In the TA problem, the graph is a twofold
cartesian product of cliques or an induced subgraph of
it. More precisely, a vertex of this graph is a pair of co-
ordinates in the assignment matrix, and there exists an
edge between two vertices if the corresponding coordi-
nates differ on exactly one component. Berger-Wolf [1]
studies this problem in the context of coding, and pro-
vides useful bounds and a simple systematic algorithm.
The optimal such TA function, however, has only been
found for n; = n2 and N = n?. In that case, the max-

imal index extent is (‘/Nz“) — 1. The maximal indices
extent with a diagonal arrangement of thickness ¢ was
shown to be equal to t(t — 1)/2. Vaishampayan [8] de-
scribes a family of diagonal arrangements that meet this
bound. Tian [3] uses a heuristic minimization algorithm
and combines it with an efficient image coding scheme.

In Oggier [5], a related problem for k£ > 1 is stud-
ied, in which the TA is fixed and the goal is to find
good codevectors. Semi-definite programming relax-

ations are used but no empirical results are given. IA for
lattice codebooks have been studied by Vaishampayan,
Servetto and Sloane [7]. Koulgi, Regunathan and Rose
[4] described a deterministic annealing technique for the
joint design of codebooks and IA. To our knowledge, it
is the only reference in which the IA problem for k£ > 1
is addressed explicitly.

The next two sections present novel local optimization
algorithms for building IA matrices with low MSE.

2 Binary Switching Algorithm

In [2], a simple algorithm that finds a local optimum of
the MSE is described. In this method, the neighborhood
of an TA matrix M is defined by all the matrices ob-
tained by swapping two elements in M. The algorithm
is a simple steepest descent in which the binary switch
leading to the maximal objective function decrease is
selected at each iteration. We refer to this algorithm
as the binary switching algorithm (BSA). The approach
is similar to that of Zeger and Gersho for solving the
assignation problem in channel-optimized vector quan-
tizers [9] and to the successive refinement IA technique
studied by Riskin, Ladner, Wang and Atlas [6].

3 Bipartite Matching Algorithm

We now show that it is possible to design a simple local
optimization algorithm in which the neighborhood of a
solution is much larger than in the BSA. In this new
method two solutions are neighbors of each other if we
can switch from one to the other by permutation of the
indices in a row or a column. The number of TA matri-
ces that are neighbors of a given matrix M may be as
high as nina! 4+ nang!, while in the BSA, the size of the
neighborhood is equal to (}) = N(IV — 1)/2.

To obtain a better solution from the current one, we
select one row or one column and try to find the per-
mutation of the indices that minimizes the MSE. Let
us assume, without loss of generality, that we wish to
find the best permutation of the set C; of indices that
are found in the first column. The MSE in each column
is invariant with respect to these permutations, so we
are only concerned with the MSE on the rows. Finding
the best permutation therefore reduces to a matching
problem in a bipartite graph. The two types of nodes
are on one hand the indices found in the first column,
and on the other hand the rows to which they will be
assigned. The solution is a matching between the in-
dices and the lines minimizing the MSE. An illustration
of this reduction is given on Fig. 3.

The bipartite matching problem is a classical one for
which numerous efficient algorithms exist. It is also
straightforward to formulate the problem as a linear pro-
gram. Let c¢;; be the MSE cost of assigning the index
previously found in the sth row to the jth row and let x;;
be an indicator variable such that x;; = 1 if this index
should actually be assigned to row j. The following lin-
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Figure 3: Update of an TA using bipartite matching

ear program is a formulation of the bipartite matching

problem:
ni ni

minZZcijmij, (6)
i=1 j=1

subject to

ni
Z.Z‘ij = 1Vi€{1,2,...,n1} (7

j=1
domy o= 1Vie{l,2,...,m} (8)

i=1
vy € [01Vije{l2,...m}. (9

It is well known from optimization theory that solutions
of this type of problem are integer, that is, z;; € {0,1}.

Let us assume that the index [ is found in the assign-
ment matrix M at position (4,1), that is, [ is such that
fi(l) = i and fo(I) = 1. Then the cost ¢;; of setting
f1(l) = j instead of 4 is written

cij = var((R; \ C1) U{u}). (10)

It may happen, however, that no index is assigned to
(¢,1). In that case ¢;; is simply equal to var(R; \ C1).
In the example of Fig. 3, the cost ca3 of assigning index
2 found in row 2 to row 3 is equal to var({y2, ¥s, Y7, Y9 })-
In that case, we have Rs = {ys,¥5,Y7,Y9}, C1 =
{y1,y2,y3} and | = 2. On the other hand, leaving 2
in the second row yields a cost ¢oo = var({ys, y4,¥6})-
No index is found in the last row, and the cost of leaving
this cell empty is ca4 = var({ys,y10})-

When the matching is done, that is when all z;; have
their optimal binary value, the MSE of the new IA can
be written

1 ni ni n2
MSE = CTA, ;;cﬁxﬁ + ;var((]i) . (11)

We propose two algorithms that use bipartite match-
ing as a subroutine for the IA optimization. We will
refer to the general idea as BMA (bipartite matching
algorithms). In Algorithm 1, each row and each col-
umn is optimized in turn in an arbitrary order until no
changes are made. The algorithm always finds a local
optimum since the objective function is lower-bounded
and cannot increase.

Algorithm 1 Systematic BMA
repeat
for each line (row or column) do
find the best permutation using the bipartite
matching algorithm and update M
end for
until MSE is nondecreasing

In Algorithm 2, we select at each iteration the row
or column update that maximizes the MSE decrease.
This algorithm takes more time to optimize, since once
a row is modified, it has to recompute all the column
matchings, and similarly for the columns. On the other
hand, it guarantees that at each step the direction of
maximal MSE decrease is chosen.

Algorithm 2 Steepest-descent BMA
repeat
Amax ¢ —00
for each line (row or column) ! do
find the best permutation using the bipartite
matching algorithm
A ¢ absolute MSE variation
if A > Apax then
Apax ¢ A
Imax <1
end if
end for
update row or column [, in M
until A =0

It is not clear which of the two versions should perform
best, but both algorithms yield locally optimal TA. It can
be used together with a greedy heuristic algorithm that
initializes the TA matrix M.

4 Experimental Results

We compared the performance of the three algorithms
on codebooks of different sizes designed for a correlated
Gaussian distribution with correlation factor 0.9. The
vector dimension was set to kK = 4, and the descriptions
have equal rates, that is, n; = ns. We plot the results of
the three algorithms for codebook sizes N = 64,128 and
256, and for various redundancies r. The assignment
matrix size can be deduced from r by the relation n; =
ng = V2kr+tlog N In all cases the IA initialization was
random. Results are shown on Fig. 4, 5 and 6.

In the three cases, we observe that the BMA yield
much lower distortions compared to the BSA. Algo-
rithm 2 is slightly less efficient than Algorithm 1 in most
cases. Hence the steepest descent idea does not seem to
be the method of choice in that case.

In addition, we remarked that the optimization times
were much shorter for the BMA than for the BSA, and
the shortest optimization times were obtained with Al-
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Figure 4: Results for N = 64
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Figure 6: Results for N = 256

gorithm 1. This algorithm therefore seems to be the
best one so far, both in terms of speed and quality.

5 Conclusion

We described two novel local optimization algorithms
for the design of index assignments in multiple descrip-
tion vector quantizers. These algorithms clearly improve
on a previously published local optimization method
both in optimization times and MSE.

Our current work aims at determining exact solutions
and lower bounds for the min-max problem in which
the maximal subset diameter is minimized, instead of
the average variance. It can be shown to be a valuable
criterion as well at the high resolution limit.
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