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ABSTRACT

In this paper we consider the problem of
transitory signal characterization, extracted from the
underwater environment. The main difficulty which
appears in this field is due to the transient behavior of the
received signals and to the noise level of the underwater
environment. In fact, in the received signal structure a
transient part occupies only a small zone and its capture
can be done by an adaptive detection stage. Furthermore,
we are interesting to characterize the extracted part in both
time and frequency domains.

Consequently, we propose an adaptive time-
frequency method based on the over-complete wavelet
transform concept, in which case an irregular sampling
procedure will be involved. This procedure uses a method
based on the fourth order moment, applied for each sub-
band, in order to establish the optimal weight for each
sample. The obtained results for real data prove the
capability of the proposed approach to accurately
characterize an underwater transient signal, comparatively
with the classical methods (spectrogram, for example).

1. INTRODUCTION

Since the last ten years, the characterization of
underwater environment is a current topic very
challenging, due to the richness of the potential
information that can be extracted for navigation or
communications, for example. One of the major method is
the active tomography, which provides an environmental
characterization using a man-made emitted signal.
Nevertheless, it is possible to imagine the passive
tomography concept which will benefit by the generated
signals by the natural sources (opportunity sources). In this
case, there are two major problems that can be solved.
Firstlythe processing system must to be able to accurately
detect the transient parts of the signal (figure 1). One of the
most performant detection methods is based on the joint
use of the wavelet techniques and high order statistical
measurement. In the passive tomography context we are
not only interested to detect the useful parts of the
observation, but also to characterize them (the second
problem). Consequently, it is necessary to use a method
which could be able to extract the useful information about
the processed data, knowing that the underwater
environment is highly non-stationary. In this context, the
use of time-frequency methods [2] can be a potential

solution. This class of methods must be able to provide a
suggestive information about the signal structure.
Currently, this information is provided on the time-
frequency image form (see figure 1) and, the quality of this
image strongly influences the performances of the
following processing stages.

Figure 1. Processing system for underwater transitory signal

In this work we propose a method based on the
Over Complete Wavelet Transform (OCWT) which leads
to signal processing on interest frequency sub-bands. In
each of them, an irregular sampling procedure will be used,
in order to optimally detect the useful signal features. The
results will be done in a time-frequency image form
corresponding to the frequency content variation over time.

The organization of this paper is as follows. In
section 2 we briefly present the OCWT concept. In section
3 we propose a new irregular sampling procedure, based
on a split and merge algorithm. As we will see, the
kurtosis will be used as a cost function. In section 4 we
will study the performances of our approach, using the real
underwater mammals signals . Beside, we will compare the
obtained results with the ones obtained by the classical
method (Spectrogram, Wigner-Ville Distribution) use.
Section 5 - "Conclusion" - highlights the significance of
the results and the realistic perspectives.

2. OVER-COMPLETE WAVELET TRANSFORM

In many applications, due to their remarkable
procedures, the discrete wavelet transform (DWT) has
been extensively used [3].

 From a mathematical point of view, the DWT is
generated by sampling, in the time-scale plane, of a
corresponding continuous wavelet transform (relation 1). 

 (1)
where g is the analyzing wavelet,  f  is a given signal, τ t  is
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CWT, the  term discrete wavelet transform (DWT)  is
commonly used to mean the one associated with the dyadic
sampling lattice.
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for certain analyzing wavelets that give rise to wavelet
orthonormal basis.

In practice, it was observed, that the use of
orthonormal representation is not necessarily well suited
for a given signal processing problem [4]. For example, by
regular sampling, used to compute the MRA, we can loose
the signal characteristics, represented by its maxima.
Intuitively, we can see this phenomenon in the next figure.

Consequently, the orthonormal representation
drawbacks are due to the dyadic grid. In order to eliminate
them, the key  point is the use of a non-dyadic sampling
structure, which is the case of the OCWT [5].This method
is composed by two stages :
I. Firstly, we decompose the signal with the linear filter
bank structure. The impulse responses of the filter bank are
determined by the analyzing wavelet g and the scale
samples sm. The filtering stage result is presented in the
next equation.

( ) ( )( )W f t s f D g tg m sm
, *= ∗  (3)

Here s is a scaling index which controls the filter
bandwidth and the central frequency of each filter. In
addition, we can control the overlapping between the filter
transfer functions (3.b). For s=2, we obtain the filter bank
structure used for the DWT computation; a filter bank
example is shown in 4.a., using the Morlet wavelet as the
analyzing function, which has the following analytical
expression :
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where γb and γc are the bandwidth and the frequency center
of the g Fourier transform. 
  

Figure 3. Comparison between filter banks at different scales

II. In the second stage we will sample the signal issue at
the filter bank output. We take into account the samples at
discrete times given by {tm,n}. The full algorithm to
compute the OCWT is shown in the next figure.

Figure 4. OCWT algorithm

Mathematically, OCWT may be interpreted as the
CWT sampled version of the signal by a non-dyadic
structure. Usually, we use the semi-logarithmic regular
sampling, given by the next definition [4].
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Consequently, the a0 parameter controls the filter
overlapping, and, implicitly, the redundancy degree. If a0
is 2, the redundancy will be null : the wavelet basis will
generate an orthonormal reconstruction error null, but the
extraction of the signal characteristics is not guaranteed. If
a0<2, the wavelet function set will be a frame : the
reconstruction is not perfect but we can adapt our
distribution to the signal time-frequency structure.

3. IRREGULAR SAMPLING PROCEDURE

Generally speaking, there are some advantages to
adopting an irregular sampling strategy in a representation.
Many of these advantages are inherited from the ability of
an irregular sampling to be sensitive to a signal time-
frequency behaviors. This thing is illustrated on the figure
2 : by using an irregular sampling grid (marked by a star),
we are able to extract the local maxima. The theoretical
frame of the irregular sampling strategies is presented in
[5] and some applications (for noise suppression, digital
communication, compression, etc.) are presented in [4].  In
this section we introduce a new irregular sampling
technique, well adapted for transient signal detection, in a
noisy environment. This technique will be applied to the
corresponding waveform, provided by OCWT for each
frequency channel.

It is well known [6] that the non-gaussian wavelet
coefficients provide a large value of a fourth order statistic
moment (kurtosis). On the other hand, the noise
coefficients, which currently have a gaussian probability
density function, provide a small value of the kurtosis. The
kurtosis allows us to discriminate between the useful
(transitory) and useless (noise) parts of the signal. This
principle will be applied to detect an optimal sampling grid
for each signal's representation, issued from OCWT.
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Figure 5. The Irregular sampling procedure for channel i

In the above figure we present the principle of the irregular
sampling procedure. First, the waveform issued form i -
channel of the OCWT filter bank (figure 3.b.) is uniformly
partitioned in equal length intervals. For each of them the
value of kurtosis is estimated, using the following relation
[6]:

(6)

Using these values, we apply an iterative split &
merge algorithm in order to establish the optimal partition.

For each two adjacent intervals Ik  et Ik+1, we test
the following condition :

The H0 hypothesis states that there is no useful
part in the considered intervals, so, these ones will be
merged (fusion). Alternatively, The H1 hypothesis states
that one or both intervals are subject to the useful parts of
signals and will be conserved. The algorithm runs until no
fusion is possible.

The involved threshold µs is computed for each
channel using the following formula [1,6] :
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where α - is a confidence degree [6], a0 is the overlapped
degree (see the previous section), N is a sequence length
and s is the channel index (s=1:Number_of_channels).

Finally, we obtain an optimal partition (figure 5)
and the values of the kurtosis for the optimal partition. The
obtained curve weights the samples of the supposed
waveform, ensuring an irregular sampling of this one : the
samples associated to transient parts of signal will be
"highlighted", whereas the ones associated to noise will be
almost precluded. This effect is illustrated in the figure 5.
We consider two chirps atoms (both on 128 samples),
mixed with real oceanic noise (SNR=6.02 dB). After the
OCWT (the number of the channels is 128) we apply the
method to the extracted waveform from the channel 120.
The values of kurtosis for the optimal partition provide an
optimal sampling grid which improves the representation
quality. Repeating the same algorithm for all OCWT
channels, we obtain a two-dimensional irregular sampling
grid which lead to an optimal time-frequency
representation.  On the other hand, by unifying the kurtosis
curves of the all sub-bands we obtain the detection curve,
which gives an information about temporal localization of
the transient parts of the signals. For the considered test
signal the detection curve is shown in the next figure.

Figure 6. Detection curve, obtained via OCWT

4. RESULTS

We have tested our approach with real data
corresponding to the signal emitted by a long-finned pilot
whale (Globicephala melas). The sampling frequency is
44.1 kHz and we have taken into account an observation of
5.92 seconds.   The test signal is presented in the figure
7.a.

Ones of the most employed methods for the
underwater signal processing signals are the spectrogram
and the Wigner-Ville Distribution [2]. In this case, the
obtained results are presented in the figure 7.b, c. Finally,
the obtained result using our approach is depicted in the
figure 7.d.
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5. CONCLUSIONS

The results presented in the above figure highlight
the superiority of the proposed method over the classical
time-frequency ones. The obtained time-frequency image
(7.d.) provides a complete and satisfactory information
about time-frequency behaviors of the considered signals.
Consequently, due to its good readability, it may be
successfully used for a further feature extraction algorithm.

On the other hand, the classical methods fall, for
specifically reasons : in the spectrogram case, there is a
trade off between time and frequency resolutions which
affects the signal feature representation. In the Wigner-
Ville distribution case, the interference term creates wrong
features, no correlated to the physical process.

So, we have experimentally proved the method
based on the OCWT and the irregular sampling procedure
allows an substantial improvement of the time-frequency
information. In  further works, we intend to use this

algorithm as a feature extraction method in the context of
underwater transient signal classification.
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Figure 7. Comparative results for real analysis data
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