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ABSTRACT

As a consequence of the development of telecom-
munications radio astronomers have to deal with an
increasing number of unworkable observations
polluted by man-made radio interferences. Thus, a lot
of efforts are made to develop specific mitigation
techniques. However, it appears that agorithm
efficiency is related to the quality of the acquisitions.
The first objective of this paper is to show
that: 1) receivers must be linear enough to prevent any
spread of strong interferences, 2) receivers must reach
sufficient  spectral  resolution to extract radio
astronomical information between interference lines.
As aresult of these two preliminary points, the second
objective is to describe the design of our new
generation receiver. It is a high dynamic range
powerful system for wideband measurements with
high spectra resolution and with rea time interference
excison capabilities.

1 INTRODUCTION

The negative impact of radio frequency interferences
(RFI) on the quaity of radio astronomica
observations is a matter of increasing concern for the
radio astronomy community. This issue gets worse in
the decameter wavelengths where ionospheric effects
are sensitive. Figurel shows an example of radio
emission from Jupiter polluted by man-made RFI.

In this framework, many efforts are currently put into
improving RFlI  mitigation  agorithms.  Time
properties, frequency properties and/or spatia
properties are considered in order to find efficient
excison processing techniques (see for example

[2].[3]).

![ 136

Fig[Jre 1: Time-frequency rep-ré;naio? of Ea
jovian emission without (8) and with (n) RFI. The
frequency band is 10 MHz to 40 MHz.

However, it appears that the design of current
receivers, which is based on the hypothesis of non-
corruptive environment, is not adapted. Indeed, coarse
guantization (a few bits) is usualy applied to the
signal. Unfortunately, when the interference power
increases, the non-linearities induced become
progressively too important and make spectra
estimation completely unusable [1].

That is why new generation of robust receivers must
be designed [4].



2 HIGH DYNAMIC RANGE

The study of ionospheric effects by two different
systems (CNET's survey system and decametric array
of Nangay) shows that at night, wide band receivers
have to handle an additiona variation of the input
level due to the disappearance of the D ionospheric
layer. Thus, the power spectral density of frequencies
under 12 MHz raises while the one of higher
frequencies is attenuated. The total dynamic range is
around 85 dB (see Figure 2).

Unlike in the telecommunication framework, the
presence of strong signals cannot be managed through
an automatic gain control. Indeed, given that our
signd-of-interest is at the noise level, any attenuation
will drastically reduce the sensibility of the receiver.

In conclusion, the receiver line linearity is a critica
issue and dynamic range of at least 85dB must be
achieved. In particular, 14 bits analogto-digitd
converters (ADC) must be used to digitize the signal.
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Figure 2 : Night/Day influence on the dynamic range.
Thereisa15 dB variation of the input level. Thetota
dynamic range is around 85 dB.

3 HIGH FREQUENCY RESOLUTION

In this section, we want to analyse the impact of the
frequency resolution on the bandwidth availability. In
other words, when your observations are polluted by
RFI, isit ill possible to find free channels?
This study has been carried out in the decametric band
and the results are very interesting. For example, it
appears that if you want to recover 90% of your
bandwidth, the minimum resolutions are the
following:

= for 35-45 MHz, resolution is 6.25 KHz.

= for 25-35 MHz, resolution is 1.6 KHz.

= for 15-25 MHz, resolution is 190 Hz.

= for 515 MHz, resolution is 6.25 KHz.

The figure 3 summarizes the different situations. The
compromise between resolution and number of free
channed can be obtained with this diagram.
Accordingly, computational power regquirements in
digital receivers can be adapted a priori.
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Figure 3: Free channels versus frequency
resolution in the decametric band.

4 ROBUST RECEIVER DESCRIPTION

Figure 4 describes the general synoptic of the RB.
Height radio telescopes or antennas can be connected
to the robust receiver (RR). Optica fibers links are
used to send analog signal from antennas to the RR. A
non-blocking matrix is used to configure the RR and
to share, if needed, its computing power. Then, analog
down conversion is applied to shift a 100 MHz
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synthesizer  (DDS) following by  successive
decimation filters selects the band of interest (see
Figure 5).

The decimation filters have been optimized to both
minimize the hardware and maximize the frequency
sdectivity. Thus, five half-band filters have been
implemented to process the decimation. A find
selective FIR filter with 83 coefficients (17 bits) ends
the processing (see Figure 6.8). The final dynamic of
this set of filtersis 75 dB. The input flow is 56 MHz,
the output is 2 x 14 MHz.

In terms of hardware implementation, with a good use
of haf band properties, polyphase structures and
resource sharing, a reduction of required hardware
resources is possible (see Figure 6.b). Thus, only 38
multipliers are used for the whole implementation of
the DDC. This design has been fitted in a VIRTEX I
1000.

6 CONCLUSION

With the proposed design of a robust receiver, it is
possible to achieve the high dynamic range and high
frequency resolution required for radio astronomical
observation in corruptive environments.

It is a 14 bits receiver, fully reconfigurable, with
14 MHz maximum bandwidth. Implementing a red
time FFT in the in-board FPGA has made resolution
down to 800 Hz possible. Extra computing power is
available for real time RFI mitigation agorithms.
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with 83 coefficients.
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Figure 6.b : Hardware implementation of the H6 filter. The number of multipliers is minimised.
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Figure 6.a: Implementation of the decimation filters. H1 to H5 are optimised half-band filters. H6 is FIR filter
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