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ABSTRACT 
 

An extension of superresolution methods MUSIC 
(MUltiple SIgnal Classification) and ESPRIT (Estimation of 
Signal Parameters by Rotational Invariance Techniques) 
to spaces of arbitrary dimension is proposed in the paper. 
Generalizations of signal model, spatial smoothing method 
and estimate equations are provided. Although many 
applications can be considered in the areas of radar and 
wireless communications, only one of them is considered 
for simulation results: high resolution 3D radar target 
imaging. The concluding remarks drawn in the final part of 
the paper are supported by simulation results performed 
on echo signals from a synthetic target. The discussed 
methods are also compared to the scattering center 
extraction using the Fourier transform.  

 
1. INTRODUCTION 

 
The subspace based methods represent a significant 

advance in achieving a very high resolution using the 
eigenanalysis of the data autocorrelation matrix.  

The great interest in the subspace approach is mainly 
due to the introduction of the MUSIC  algorithm [1], which 
led to many applications requiring superresolution, such 
as spectral analysis, direction of arrival and time delay 
estimation problems. Basically, this technique takes 
advantage of the autocorrelation matrix eigenstructure 
resulting in the decomposition of the observation space 
into two orthogonal subspaces, called signal and noise 
subspaces. The signal components are searched by means 
of a variable mode vector which is continuously projected 
onto the noise subspace. 

Although this method is simple and robust, allowing 
even for non-uniformly spaced samples, it may sometimes 
become computationally too expensive because of the 
searching nature of the algorithm.  

Another very effective superresolution technique 
introduced by Roy and Kailath [2] and called ESPRIT, 
overcomes this drawback by calculating the signal 
components as the solutions of a matrix eigenanalysis 
problem.  

Extensions of the two algorithms, MUSIC and ESPRIT, 
to the 2D and more recently even to the 3D case [3,4] have 
been already proposed. This paper performs the last step 
generalizing them to the case of multidimensional 
hyperspaces. We will discuss them in the framework of the 
accurate position recovering of an electromagnetic source 
set using noisy observations. 
 

2. ESTIMATOR EQUATION DERIVATION 
 
2.1. Signal model 
 
The superresolution techniques MUSIC and ESPRIT 

are well suited for analyzing signals expressed as a sum of 
weighted complex exponentials corrupted by additive, 
white, Gaussian noise. A general model of this type of 
signal is given bellow: 
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From a physical point of view this model can be seen 
as representing a distribution of sN  sources in a n - 
dimensional space, each of them being characterized by a 
reflection coefficient kγ  and a position vector 

( )( ) ( ) ( )
1 2, , ,k k k

nξ ξ ξ… . We also denoted by ( ) , 1..
i

i
m i if m M= , 

the th
im  sample of the ( )if  spatial frequency 

corresponding to the dimension i of the space. The data 
are organized in the form of an 1 2 nM M M× × ×…  array, 

1 2( , , , )ns m m m…  and 1 2( , , , )nw m m m…  representing an 

observation and a noise sample respectively. η  is a 
constant, whose value depends on the problem nature. 



Spatial frequencies are supposed to be uniformly 
spaced, so that: 
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where ( )if∆  is the spatial frequency step along the 
dimension i. 

The final goal of the two investigated methods is to 
recover the source localisation with very high resolution 
from the available data. This problem becomes very 
difficult especially when the data volume is poor or the 
signal to noise ratio is low.  

Both methods involved in our study require the 
eigenanalysis of the autocorrelation matrix of the data. 
Since it is not generally known it must be estimated from 
the acquired data samples. A common approach consists 
in averaging a set of  observation vectors:  
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The sR  matrix must be of full rank in order to properly 

separate the sources [5]. In order to restore the full rank of 
the autocorrelation matrix, even when one data vector is 
available, we firstly generalized the spatial smoothing 
method. 

The 1 2 nM M M× × ×…  data array is scanned by a 

1 2 np p p× × ×…  window, with1 , 1,..,k kp M k n≤ ≤ = . For 
an arbitrary fixed position of this sliding window, there are 

!n  different ways for scanning the data array inside this 
window, corresponding to the {1,2,.., }n  set  permutations. 

Let 1{ ,..., }nq q  be a given permutation. 1q  will be then the 
dimension the most often scanned, followed by 2q  and so 
on. We will call it the sparse  scanning 1 1{ , ,..., }n nq q q−  to 

stress that the dimension nq  is the less often scanned 
dimension. We group these sparse scanning orders in n  
equivalence classes, according to the equivalence 
relationship : 

1 1{ ,..., } { ,..., }n nq q q q′ ′ ′′ ′′≡ if n nq q′ ′′=         (4) 
In other words two sparse scanning orders belong to 

the same class if the less often scanned dimension is the 
same. Each scanning yields a 1 2 np p p p= × × ×…  length 
vector, which includes all the window elements, in the 
order given by the scanning procedure.  

Next, a representative of each sparse scanning class is 
chosen, which can be considered, without any loss of 
generality, the direct circular permutation included into the 
specified class, i.e.:  {1,2,.., 1, },n n− {2,3,..., ,1},n  

...,{ ,1,.., 2, 1}n n n− − , denoted by 1 2, ,..., nord ord ord . In 

the following the scanning order is considered fixed. 
For a given window f, a vector sf  is formed with its 

elements, according the scanning order lord  (this vector 

will be sometimes denoted by lord
fs  in order to integrate the 

associated information concerning the window index and 
the scanning order). A noise vector wf  can be defined in 
the same manner for every sliding window. Because 
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= − +∏  windows can be considered,  the  

same  number  of  vectors can be defined. The vector 
obtained by concatenating the elements of each window is 
considered as an independent observation.  

The overall autocorrelation matrix is then obtained by 
averaging the corresponding individual autocorelation 
matrices. 
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For a given window and a fixed sparse scanning order, 
the following matrix relationship can be written: 
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where and the index u = 1,..,n stands for the spatial 
dimension, ν = 1,..,Ns for the source number, and  

{ }1,u nb p p p= ∈ …  for the smoothing window length 

along the u  dimension. The operator ⊗ is the Kronecker 
product. In order to make more comprehensive the 
notations above, a particular case corresponding to the 
sparse scanning order 1ord  is detailed below: 
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As it can be readily seen in these equations the matrix 
A can be built by using different sparse orders ord l for 
considering the blocks generated by the n-D spatial 
smoothing technique.  

For each of them we can express the observation 
vector autocorrelation matrix using: 

( ) ( ) ( ) ( )2l l l l
Hord ord ord ordσ = + = + s ?R A R A I S W     (12) 

where ?R  is the autocorrelation matrix of the ?  vector and 
2σ  is the variance of the noise. 



2.2. Multidimensional MUSIC algorithm 
 
The main idea behind this method is to split the 

observation space, spanned by the eigenvectors of the 
autocorrelation matrix sR , into two orthogonal subspaces, 

usually named the signal subspace and the noise 
subspace. Note that for this algorithm any sparse scanning 
order ord l can be considered to form the vectors sf and 
therefore it will be ommitted in the following. 

Let iµ  and  iv   be the eigenvalues and the 
eigenvectors of  the S  matrix. There will be only sN  non-
zero eigenvalues because of the rank of the S  matrix. 
Hence, the following relationship holds:  
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The unit matrix can be put in the same form, because 
all its eigenvalues are equal to 1 and any vector may be 
considered as its eigenvector: 
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The following equation is then obtained by replacing 
(13) and (14) in (12): 

2 2

1 1

( )
s

s

N p

i
i i N

µ σ σ
= = +

= + +∑ ∑H H
s i i i iR v v v v        (15) 

Consequently, the autocorrelation matrix eigenvectors 
corresponding to the largest sN  eigenvalues, known as 
the principal eigenvectors, span the same subspace as the 
signal vectors, while the other eigenvectors span the noise 
subspace. 

Let us define the ( )sp p N× −  matrix nV , whose 
columns are the sp N−  eigenvectors corresponding to 
the noise subspace. The location of each scattering center 
can be then found by searching the maxima of the 
function:  
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where 1( , , )na ξ ξ% …  is the mode vector defined by the same 
relationship as the columns of the A  matrix. 

The mode vector becomes orthogonal to the noise 
subspace and on any linear combination of the 
eigenvectors that span this subspace for   

( ) ( )
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n nξ ξ ξ ξ=… … 1.. sk N= . That means that the 
estimate defined by Eq. (16) will theoretically have infinite 
value whenever it is evaluated at a location corresponding 
to a scattering center. In the equation above H

n n n
⊥∏ = V V  

stands for the projection operator on the noise subspace. 
In practice, this  function will be finite because of the 
estimation errors, but it will exhibit very sharp peaks. 

 

2.3. Multidimensional ESPRIT algorithm 
 
Let us denote by S{R} the vector space spaned by 

the columns of the R matrix. In this case we can 
write: { } { }( ) ( )l lord ord

sS S=A V , where ( )lord
sV  is the matrix 

whose columns are the principal eigenvectors of the sR  
matrix when the order used for its construction is lord . 

Hence, there is a full rank sN  matrix ( )lordT  so that the 

following relationship holds: 
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The ( )lordA  matrix can be also writen as:  

{

{

( )
1( )

( )
1 2 1

( )
1 2 1

( )
2

rows

rows

l

l

l

l

l

ord
ord

ord
l l lL

ord
H l l l

ord

p p p

p p p

+ + −

+ + −

 
=  

× × ×  

  × × ×
=  

  

A
A

A

A

A

…
…

       (18) 

with the A1 and A2 matrices related by: 
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Eq. (17) and (18) result in: 
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We have thus succedeed in computing the source 
coordinates on each of the n dimensions of the 
hyperspace. Nevertheless, since they have been found 
from independent equation systems, they cannot be 
associated to uniquely identify the source positions.  

A very important property, which help us to solve this 
problem is defined by the relationship: 

1 2 ( )( ) ( ) nordord ord= = = =T T T T…     (24) 
Futhermore, it can be shown that this matrix 

simultaneously diagonalizes the matrices , 1..l l n=F . 
Consequently, it will diagonalize also the 
matrix 1 1 n nα α= + +F F F… , where the coefficients 

, 1..l l nα =  satisfy  1lα =∑ . 

Applying this transformation to all the 
matrices , 1..l l n=F , we can therefore obtain the diagonal 

matrices ( ) , 1..lord l n=F , which is equivalent to find the 

couples of coordinates ( ) ( ) ( )
1 2( , , , ), 1..k k k

n sk Nξ ξ ξ =… . 



3. SIMULATION RESULTS 
 

Some simulation results will be presented nextly to 
illustrate the performances of the methods described in the 
previous sections for the 3-D case.  

A frequency stepped signal, with a frequency band 
between 9880 MHz and 10000 MHz has been considered. 
The frequency step equals 15 MHz,  which results in a 
slant range ambiguity window of /(2 ) 1 0 msW c f∆ = ∆ =  

and a slant range  resolution of  /(2 ) 1 . 2 5 msR c B∆ = = . 
The cross range ambiguity window and resolution can be 
calculated based on the coherent integration angular 
sector 00.68β∆ = . An increment 00.085δβ =  yields 

/(2 ) 1 0 mc mW λ δβ∆ = ≅  and /(2 ) 1 . 2 7 mc mR λ β∆ = ∆ ≅ . 

The same values are considered for the vertical range 
ambiguity window and resolution.  

In order to test the conceived algorithms a synthetic 
target defined by 8 scattering centers has been considered. 
Their coordinates are provided in table 1, while their spatial 
distribution is represented on figure 1.  Note that there are 
distances between scattering centers under the Fourier 
resolution along all the three axis. 

Table 1: Scattering centers coordinates 
SC # #1 #2 #3 #4 #5 #6 #7 #8 

x -3 -2 0.5 0.5 2 2 3.5 3.5 
y 0 0 -3 3 -0.5 0.5 -2 2 
z 0 1.5 -1 -1 2.5 2.5 1.5 1.5 
FFT-3D transform has been used firstly to image the 

target (fig. 2). It can be readily seen that in the 
reconstructed image the scattering center that are closer 
than the Fourier resolution overlap and therefore cannot 
be correctly localized.MUSIC and ESPRIT algorit hms have 
been then employed to image the same target with 

1 2 3 5p p p= = = . Note that these algorithms fully 
succeeded in resolving all the scattering centers (fig. 3) 
and therefore they can be easily localized now. The results 
obtained by using ESPRIT-3D method are not represented 
because they are identical with the scattering center 
positions given on figure 1.  

 
4. CONCLUSION 

 
The extension of two superresolution methods, 

MUSIC and ESPRIT, to multidimensional hyperspaces is 
demonstrated in the paper. Signal model, autocorrelation 
matrix eigenanalysis, subspace splitting, spatial smoothing 
method and estimation equations are discussed. The 
particular case of the 3D space is considered for 
simulations in the context of the radar target image 
reconstruction. The highly accurate estimates of the 
scattering center positions are excellent candidates as 
feature vectors for automatic radar target classification. 

 
Fig. 1 Synthetic target scattering center localization 

 
Fig. 2 Radar target imaging using FFT-3D transform 

 
Fig. 3 Radar target imaging using MUSIC-3D 
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