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ABSTRACT

A class of channel precoder constructed with equalizer with

minimal implementation complexity, and no channel noise

ampli�cation e�ect is proposed in this paper. The derivation

on the formulation of the precoder and equalizer pairs are

presented. Where the applied equalizer is a simple nonuni-

form sampling system. Because of the allpass nature of the

equalizer, the performance of this class of channel precoder

will not be su�ered from channel noise ampli�cation e�ect.

The existence of such precoder, equalizer pairs are derived,

which is shown to be compatible with that of ordinary linear

precoder.

1 Introduction
While the data rate of the telecommunication system ex-

pands rapidly, the e�ect of multipath fading becomes more
and more serious. Therefore, eliminating the frequency dis-
tortion caused by the intersymbol interference (ISI) prob-
lem in multipath fading turns out to be an essential pro-
cess for most of the systems. Channel equalization is one
of the technique used for compensating the frequency dis-
tortion induced by ISI. The channel equalization can be
performed in the transmitter (precoding) or the receiver
(post-equalization). There are many research results for the
post-equalization technique, but most of these techniques
have a common problem. When the post-equalizer trying
to equalize a signal that falls in deep fading by increasing
the ampli�cation in the fading frequency. As a result, the
noise in the corresponding frequency spectrum will also be
ampli�ed. This will reduce the signal-to-noise ratio of the
equalized signal, and hence increase the error rate of the
received information. However, if the transmitter can have
the knowledge of the channel transfer function, precoding
technique can be applied to e�ectively reduce this noise en-
hancement e�ect.

The precoding techniques can also be used to sim-
plify the equalization process in the receiver. The post-
equalization technique usually requires a lot of processing
power in the receiver, so if post-equalization techniques is
used, the complexity and power consumption in the receiver
will usually be high. This will directly a�ect the cost, size
and bettary life of the mobile receiver signi�cantly. By re-
shaping the transmitted signal with some special precoding
techniques, the computation required in the equalizer can
be reduced substantially.

In this paper, a class of precoding technique is proposed.
The equalizer of this class of precoder is constructed by sam-
plers only. As a result, the equalizer of this class of precoder
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Figure 1: Two channels perfect reconstruction tran-

multiplexor.
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Figure 2: Modi�ed two channels perfect reconstruction

transmultiplexor.

achieve minimal implementation complexity. Moreover, the
noise enhancement e�ect associated with channel equaliza-
tion will be eliminated. This is because the equalizers are
allpass functions, and has unit gain. This paper begins by
introducing perfect reconstruction transmultiplexor based
on nonuniform sampling. The proposed precoder will be
derived in Section 3. Although the equalizer of this class of
precoder is constrained to be simple nonuniform sampling
system, the existence criteria of such precoder, equalizer
pairs are shown to be compatible with that of ordinary lin-
ear precoder as shown in Section 4. The paper concluded
with the formulation on the precoder �lters with a given
channel response in Section 5.

2 Transmultiplexor Structure
Fig.1 shows a simple transmultiplexor structure with two

channels. The transmultiplexor is known as perfect recon-
struction when Ya(z) = Xa(z) and Yb(z) = Xb(z). Ob-
served from Fig.1, perfect reconstruction is possible if and
only if,

(a� b)mod N 6= 0 (1)

If we modify one of the synthesis �lter from za to za +
zb�(zN), and the analysis �lter from z�b to z�b�z�a�(zN ),
we obtain a new transmultiplexor, where the intermediate
signal before downsampling is given by

Ua(z) = Xa(z
N )[1 + zb�a�(zN )] +Xb(z

N )zb�a (2)

Ub(z) = Xb(z
N )[1� zb�a�(zN )] +Xa(z

N )za�b[1� z�1�2(zN )](3)

It can be easily observed that downsampling Ua(z) by N

will recover Xa(z) if and only if eq.(1) is satis�ed. Sim-
ilarly, Xb(z) can be recovered from Ub(z) with the same



�N 0a
z

� )(
0

zYa
)(

0
zX a �

��

�

�
1

0

0, )(0

KN

j

N

b

ba
zzz

j

j�

�
��

�
���

1

0

1, )(1

KN

j

N

Kb

ba
zzz

j

jK �

�N

1�� Ka
z )(

1
zY

Ka �
�N�N)(

1
zX

Ka �

0b
z

1��KNb
z

)(
0

zYb�N

)(
1

zY
KNb ��

�N

�N)(
0

zX b

�N)(
1

zX
KNb ��

�
�

�

�� �
1

0

,0 )(0

K

i

N

a

ab
zzz

i

i�

�
�

�
��

�� ���

1

0

,1 )(1

K

i

N

aKN

ab
zzz

i

iKN �

Figure 3: Extended N channel perfect reconstruction

transmultiplexor.
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Figure 4: Structure of Proposed Precoder-Equalizer.

condition. Further noticed that the above perfect recon-
struction transmultiplexor is structurally guaranteed and
independent with the choice of �(z) [8]. This simple two
channels perfect reconstruction transmultiplexor can be ex-
tended to an N channel system. Let A be a subset of inte-
gers chosen from R : f0; 1; 2; � � � ; N � 1g with K elements.
The extended perfect reconstruction N channel transmulti-
plexor is shown in Fig.3, where ai 2 A; 0 � i � K � 1, and
bi 2 R nA; 0 � j � N �K � 1. It can be veri�ed that the
transmultiplexor in Fig.3 is structurally guaranteed to have
perfect reconstruction [8]. This structure forms the base of
our discussion.

3 Proposed System
Fig.4 shows the proposed system which consists of the

blocking and unblocking structures at the two ends of the
system, and a precoder-equalizer core. Noticed that the
equalizer is constructed by sampling the delayed channel
input signal at time ak, where 0 � ak � N � 1 and 0 �
k � K � 1. Without loss of generality, we assumed that
a0 < a1 < : : : < aK�1.

Since the blocking and unblocking structures in the pro-
posed system is known to be perfect reconstruction [2].
Therefore, the proposed system is perfect reconstruction
if and only if the precoder-equalizer pair is perfect recon-
struction. Fig.5 redraw the extracted precoder-equalizer
pair from Fig.4. Comparing Fig.5 with Fig.3, it can be
observed that the proposed precoder-equalizer structure is
compatible with theN channel perfect reconstruction trans-
multiplexor discussed in Section 2 with the following mod-
i�cations
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Figure 5: Transmultiplexor core of the proposed sys-

tem.
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plexor core of the proposed system.

1) Ignore all channels for Xbj for 0 � j � N � K � 1.
One way to achieve this is to assume Xbj = 0.

2) The product of the procoding �lter and channel re-
sponse satis�es

H(z)Gi(z) = z
ai +

N�K�1X
j=0

z
bj �bj ;i(z

N ); for 0 � j � N �K � 1

(4)

When all of the above conditions are satis�ed, the trans-
multiplexor core in Fig.5 is perfect reconstruction, and
hence the proposed system in Fig.4 will be perfect recon-
struction. As a result, the analysis of the proposed system
can be simpli�ed to the analysis of the transmultiplexor core
in Fig.5. Noted that although the considered subband �lter
Gi(z); 0 � i � K � 1 will be noncausal, the FIR nature
of Gi(z) allows us to delay the �lter with �nite number of
delays to make it causal. As a result, without loss of gener-
ality, we will consider the design and analysis of a noncausal
Gi(z) for simplicity.

Consider
Fi(z)

4
= H(z)Gi(z) (5)

The proposed transmultiplexor core in Fig.5 can be rep-
resented by the polyphase matrix F(z) as shown in Fig.6,
where F(z) is de�ned as

F(z) = H(z)G(z); (6)

and H(z) and G(z) are the polyphase representation of the
channel �lter H(z) and subband �lters Gi(z); 0 � i �
K � 1, and are given by

H(z) =

2
66664

H0(z) z�1HN�1(z) � � � z�1H1(z)
H1(z) H0(z) � � � z�1H2(z)

.

.

.
.
.
. � � �

.

.

.

HN�2(z) HN�3(z)
. . . z�1HN�1(z)

HN�1(z) HN�2(z) � � � H0(z)

3
77775 ; (7)



G(z)
4
=

2
64

G0;0(z) � � � G0;K�1(z)
...

. . .
...

GN�1;0(z) � � � GN�1;K�1(z)

3
75 ; (8)

whereHi(z); 0 � i � N�1 andGi;k(z); 0 � k � N�1; 0 �
i � K�1 are the Type-2 N polyphase components of H(z)
and Gi(z) respectively. Noticed that with

F(z) =

2
64

F0;0(z) � � � F0;K�1(z)
...

. . .
...

FN�1;0(z) � � � FN�1;K�1(z)

3
75 ; (9)

the proposed transmultiplexor core is perfect reconstruction
if and only if eq.(4) is satis�ed, which is equivalent to have

Fj;i(z) =

(
1 ; j = ai
�bp;i(z) ; j = bp; for 0 � p � N �K � 1
0 ; otherwise

(10)
Since �bp;i(z) can be arbitrary chosen, Fj;i(z) can have any
form when j = bp. Let,

� =

2
664

0 � � � 0 1 0 � � � 0 0 0 � � �
0 � � � 0 0 0 � � � 0 1 0 � � �
...

...
...

...
...

...
...

...
...

...
0 � � � 0 0 0 � � � 0 0 0 � � �

� � � 0 0 0 � � � 0
� � � 0 0 0 � � � 0
...

...
...

...
. . .

...
� � � 0 1 0 � � � 0

3
775 (11)

where `1' in �(z) are located at the ai-th columns for 0 �
i � K � 1. Hence,

�F(z) = IK (12)

where IK is a K �K identity matrix. By (12),

�H(z)G(z) = IK (13)

As a result, when �(z)H(z) has FIR inverse, the proposed
precoder exists, and equals to the FIR inverse of �(z)H(z).
Noncausal �lters Gi(z), 0 � i � K � 1, can be obtained.
The causal FIR precoder can be found easily by adding an
appropriate constant delay to each precoding �lter, Gi(z).

4 Existence of Precoder-Equalizer Pair
The proposed precoder-equalizer pair exist if and only if

�H(z) has FIR inverse. The necessary and suÆcient con-
dition on H(z) to has a general precoder-equalizer pair has
been derived in [3]. Since our proposed system has a con-
strained structure for the equalizer, there will be extra con-
strains on the suÆcient condition for the existence of FIR
inverse of the proposed system.

Let WN be a N � N DFT matrix, i.e., Wn
4
=

(Wnk
N )0�n;k�N�1, where WN = e�j2�=N . Let �(z) be a

diagonal matrix

�(z)
4
= diag(1; z�1; � � � ; z�(N�1))

Derived from eq.(7), we can see that

[H(z); z�1H(z); ::: ; z�(N�1)H(z)] = [1; z�1; ::: ; z�(N�1)]H(zN ) (14)

By replacing z by zWn
N for n = 0; 1; � � � ; N � 1 in eq.(14),

Ĥ(z) =W�
N�(z)H(zN ) (15)

where

Ĥ(z) =

2
64

H(z) z�1H(z) � � �

H(zWN ) z�1W
�1
N

H(zWN ) � � �

.

.

.
.
.
.

. . .

H(zWN�1
N

) z�1W
�(N�1)

N
H(zWN�1

N
) � � �

� � � z�(N�1)H(z)

� � � z�(N�1)W
�(N�1)

N
H(zWN )

. . .
.
.
.

� � � z�(N�1)W
�(N�1)(N�1)

N
H(zWN�1

N
)

3
75 ;(16)

and (�)� denotes conjugate. Let V(z) be the following
diagonal matrix

V(z)
4
= diag(H(z); H(zWN); � � � ; H(zWN�1

N )): (17)

The matrix Ĥ(z) in eq.(16) can be written as

Ĥ(z) = V(z)W�
N�(z): (18)

By combining eq.(15) and (18), H(zN) can be diagonalized.

H(zN) = [W �
N�(z)]

�1
V(z)W �

N�(z) (19)

The condition for the matrix �H(z) has FIR inverse is
equivalent to �H(zN ) having FIR inverse. The existence
problem can be reformulated as �H(zN ) FIR inverse exis-
tence problem. Multiply � to eq.(19),

�H(z) = �[W�
N�(z)]

�1
V(z)W�

N�(z)

= diag[za0 ; za1 ; ::: zaK�1 ]

� A(z)V(z)W�
N�(z)

where

A(z) =

2
6664

1 W
a0
N � � � W

(N�1)a0
N

1 W
a1
N � � � W

(N�1)a1
N

...
...

. . .
...

1 W
aK�1
N � � � W

(N�1)aK�1
N

3
7775 (20)

Since diag[za0 ; za1 ; ::: zaK�1 ], W �
N and �(z) have FIR in-

verse, �H(z) has FIR inverse equivalent to A(z)V(z) has
FIR inverse.

Let S be the set of all zeros of H(z): S
4
= fz1; z2; : : : ; zPg

with H(zi) = 0, 1 � i � P . [3] has proved that a general
precoder-equalizer pair with K = N � 1 exist if and only if

Sp \ Sq = � (21)

for 0 � p 6= q � N � 1, where Si
4
= W i

NS for any integer i.
Therefore, we can always set K = N � 1 by adjusting the
value N such that Sp \ Sq = � for 0 � p 6= q � N � 1.



Assume the eq.(21) is satis�ed, so N = K � 1. Because
A(z)V(z) is a K � N matrix, A(z)V(z) has FIR inverse
if and only if the greatest common divisor (gcd) of deter-
minants of all K �K submatrices of the A(z)V(z) is cz�d

for a nonzero constant c and an integer d [2]. Consider a
K �K submatrix of A(z)V(z). The determinant of such a
matrix is given by

detf[(WN )fa0;:::;aK�1g;f1;:::;p�1;p+1;:::;Ng]

� diag(H(z); : : : ; H(zW p�1
N ); H(zW p+1

N ); : : :

: : : ; H(zWN�1
N ))g

= W
N�p�1
N detf[(WN )fa0;:::;aK�1g;f1;:::;N�1g]g

�

N�1Y
i=0;i6=p

H(zW i
N)

= Cp

N�1Y
i=0;i6=p

H(zW i
N)

Since detf[(WN )fa0;:::;aN�2g;f1;:::;N�1g]g is a Van-
dermonde's determinant for the sampling sequence
fa0; a1; : : : ; aK�1g, Cp is nonzero. As a result, if
H(z) 6= 0; 8z > 0, the K � K submatrices of A(z)V(z)
can be made equals to cz�d by adjusting N . Therefore,
the precoder for our proposed equalizer structure can

always be found for any sampling sequence in the equalizer.
Noticed that similar condition exist in the general linear
precoder-equalizer pair as derived in [3]. Further noticed
that the minimum N that can be used to construct FIR
precoder with our proposed equalizer structure is the
same as that of the general linear precoder-equalizer pair
as discussed in [3]. Therefore, we considered the FIR
equalizable condition our proposed precoder structure to
be compatible with that of the general linear precoder
considered in [3] various literature.

5 Finding Precoder G(z)
If �H(z) has FIR inverse, it can be easily see that G(z)

can be found by,

G(z) = [�H(z)]y (22)

where (�)y denotes the pseudoinverse. The pseudoinverse
can be found by decomposing the K�N polynomial matrix
�H(z) into a product of three polynomial matrices P(z),
D(z) and Q(z).

�H(z) = P(z)D(z)Q(z); (23)

where P(z) and Q(z) are K � K and N � N unimodular
matrices, respectively, and

D(z) =
�
diag[z�d0 ; z�d1 ; : : : ; z�dK�1 ] 0K�(N�K)

�
for K integers d0; d1; : : : ; dK�1. Since P(z), D(z) and Q(z)
has FIR inverse, the polynomial matrix of the precoder
G(z) is given by

G(z) = Q�1(z)

�
diag[zd0 ; zd1 ; : : : ; zdK�1 ]

0(N�K)�K

�
P
�1(z)

(24)

6 Conclusions
A class of precoder-equalizer pair is proposed where the

equalizer is a simple delayed sampling system. Since the
sampler is an allpass system and has unit gain, the channel
noise ampli�cation problem associated with channel equal-
izer is eliminated in the proposed system. Moreover the
equalizer has minimal implementation complexity, and thus
is very suitable for mobile applications. The formulation
and structure of the proposed system is derived. It is proved
that the proposed precoder-equalizer pair is applicable in
all FIR equalizable channels for ISI free communications.
Other advantages of the proposed system, such as trans-
mitter power control, signal spectrum utilization eÆciency
etc. will be our future work.
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