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28006 MADRID (Spain)

edominguez@etsii.upm.es

Nuria González Prelcic
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ABSTRACT

In this paper we investigate the polynomial extension
technique, which has been used as an alternative to
symmetric extension when dealing with orthogonal (non
linear-phase) filter banks, since it does not introduce
artificial discontinuities either; the drawback of sym-
metric extension is that it has been traditionally im-
plemented as an expansionist transform. Considering
a tree-structured paraunitary FIR filter bank with a
minimum number of vanishing moments, we show that
polynomial extension leads to a non expansionist inver-
tible subband transform for finite signals. Hence, there
is no need of extra samples of the subband signals to
achieve perfect reconstruction. Additional advantages
of the proposed extension method are also illustrated in
our experimental results.

1 INTRODUCTION

During the last years, maximally decimated FIR filter
banks have become a popular tool to perform subband
signal decompositions. In this work we concentrate on
tree-structured FIR paraunitary filter banks, which are
commonly used to construct orthogonal wavelet packet
transforms. The issue of concern here is the investiga-
tion of the properties of some extension methods for the
treatment of finite signal boundaries in order to main-
tain perfect reconstruction (PR).
Among the classical extension techniques for size-limited
filter banks [1, 2, 7, 8], the only ones that guarantee
perfect reconstruction are the periodic extension and,
for linear phase filters, the symmetric extension. Thus,
when using FIR paraunitary filter banks, only perio-
dic extension assures PR after the synthesis stage. The
disadvantage is that it creates discontinuities in the ex-
tended signal, which can be seen as spurious high fre-
quencies in the transform domain.
In this work, we study an alternative technique for sub-
band processing of finite signals: the polynomial exten-
sion. First, we prove that it guarantees PR at the syn-
thesis stage, whenever the paraunitary filter bank has a

∗This work has been supported by CICYT through the Re-
search Project AMULET, reference TIC2001-3697-C03-01.

minimum number of vanishing moments. In this way, it
is a non expansionist transform, since the original sig-
nal can be perfectly recovered with no need of extra
coefficients in the transform domain. We also construct
the family of biorthogonal boundary filters associated to
the polynomial extension method, both for the analysis
and for the synthesis stage. Finally, we show that the
proposed technique does not introduce artificial discon-
tinuities for polynomial signals, clearly overcoming the
periodic extension.

2 PRELIMINARIES AND NOTATION

In this section we summarize the notation and recall
a few results from our previous publications which are
necessary to follow the development of the present work.
We will consider only real valued signals and filters.
Boldface lowercase letters will denote vectors and bold-
face uppercase ones will denote matrices. We use Hm×n

to represent an m rows n columns matrix; the Nth-order
null and identity matrices are respectively denoted by
0N and IN ; r(A) is the rank of the matrix A.
Throughout this paper we will consider a two channel
paraunitary filter bank, given by the low pass filter h =
[h(0), h(1), · · · , h(L − 1)] and its associated high pass
filter g = [h(L − 1),−h(L − 2), · · · ,−h(0)], assuming
that L = 2K + 2, with K even.
Our investigation is based on the study of the trans-
formation of the linearly extended vector xe, i.e., ye =
HN×(N+2K)xe, where

i) xe = [xT
l ,xT ,xT

r ]T , being x the original finite signal
of even length N ≥ 2K, with x = [xT

a , · · · ,xT
b ]T ;

xa and xb contain, respectively, the K first and K
last components of x.

ii) xl = Cl,axa + Cl,bxb and xr = Cr,axa + Cr,bxb,
where Cl,a,Cl,b and Cr,a,Cr,b are, respectively, the
left and right linear extension matrices.

iii) HN×(N+2K) is the matrix whose rows contain the
even shifts of h and g, and can be written as a
block Toeplitz form as shown in the previous lite-
rature [6]. In the other way, HK×3K can be split
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into three block-Toeplitz submatrices of order K:
HK×3K = [D E F]. D and F are, respectively, up-
per and lower block triangular matrices. Moreover,
we can write [5] D = Q1KDP1, F = Q0KFP0 and
E = Q1KDCP0 − Q0KFCT P1, where [Q0 Q1]
and [P0

T P1
T ] are unitary, and KF, KD and C

are square matrices of order K/2.

This transformation of x amounts to processing the ex-
tended signal xe by means of the analysis filter bank
given by h and g, only retaining the N central output
samples. The whole transformation of the original signal
x can be expressed as ye = Gx, where [4, 5]

G =




DCl,a+E F 0K×(N−3K) DCl,b

H(N−2K)×N

FCr,a 0K×(N−3K) D E + FCr,b


 .

The results presented in this work are based on the study
of matrix G when the extension technique is polynomial.

3 POLYNOMIAL EXTENSION TRANSFOR-
MATION MATRIX

In [4], we proposed the polynomial extension technique
of any finite signal x: it consists of extrapolating its
first K samples (xa) and its last K samples (xb) by
using polynomials of degree < K, so as to obtain the
respective extended vectors at the left and right border
xl and xr; the extended signal xe will be processed later.
Figure 1 displays a finite signal x and its polynomial
extension xe.

Figure 1: Polynomial extension of the finite signal x.

Let us explain how to build the extended vector. It is
known that any polynomial p of degree < K verifies

p(n + K) =
K∑

j=1

(−1)(j+1)

(
K
j

)
p(n + K − j). (1)

for any integer n. This means that any new sample
p(n+K) obtained via polynomial extension at the right
edge can be computed as a fixed linear combination of
the K previous ones (p(n + K − 1), . . . , p(n)), whose co-
efficients are:

cj = (−1)(j+1)

(
K
j

)
∀j = 1, ...,K.

Thus, equation (1) provides a simple algorithm for ob-
taining the samples of the extended vector at the right
edge, xr: from m = 1 to m = K,

xr(m) =
m−1∑

j=1

cjxr(m− j) +
K−m∑

j=0

cj+mxb(K − j).

This procedure can be expressed matricially:




xr(1)
...

xr(K)


=

[
0(K−1)×1 IK−1

cK . . . c1

]



xb(K)
xr(1)

...
xr(K − 1)


 .

Let M denote this Frobenius matrix; by iteration over
the vector at the right hand side, we obtain xr = MKxb,
so V = MK is the right extension matrix Cr,b associated
to the proposed polynomial extension, and Cr,a is null.
Analogously, we build the extended vector xl by polyno-
mial extension on the left edge: from the expression (1),
we also obtain p(n) =

∑K
m=1 cmp(n + m); this means

that the samples at the left hand edge can also be com-
puted iteratively from the subsequent samples:

xl(m) =
K−m∑

j=1

cjxl(m + j) +
m∑

j=1

cj+K−mxa(j),

starting from m = K and decreasing up to m = 1.
Notice that the outermost components of the appended
segments xl, xr are always computed by means of the
innermost ones. Matricially,




xl(1)
...

xl(K)


 =

[
c1 . . . cK

IK−1 0(K−1)×1

]



xl(2)
...

xl(K)
xa(1)


 .

If M′ denote this Frobenius matrix, by iteration over the
vector at the right hand side we obtain xl = M′Kxa, so
W = M′K is the left extension matrix Cl,a associated
to polynomial extension, and Cl,b is null.
We conclude that the subband transform matrix associ-
ated to the polynomial extension is

Gpol =




E + DW F 0K×(N−2K)

H(N−2K)×N

0K×(N−2K) D E + FV


 .

4 INVERTIBILITY OF THE POLYNOMIAL
EXTENSION SUBBAND TRANSFORM

In this section we prove that the polynomial extension
method is non expansionist; in other words, the asso-
ciate matrix Gpol is nonsingular. In our previous work
[4] we provided some invertibility criteria for the family
of matrices G; in order to show that Gpol is invertible,
we first present a new characterization:
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Proposition 1: If Cl,b and Cr,a are null, then G is
invertible if and only if

r((E + DCl,a)P0
T ) = r((E + FCr,b)P1

T ) = K/2.

Proof: It is known [4] that G is invertible if and only if
the submatrix containing its K first and K last columns
has maximum rank 2K. When Cl,b and Cr,a are null
matrices, it is equivalent to

r

([
E + DCl,a

D

])
= K = r

([
F

E + FCr,b

])
.

This means that the null spaces of both matrices are
zero. The null space of the first matrix is the set of
vectors v such that (E + DCl,a)v = Dv = 0K×1; as
DP0

T is null [5], they can be written as v = P0
T x, with

(E + DCl,a)P0
T x = 0K×1. This subspace is zero if and

only if the K/2 columns of (E + DCl,a)P0
T are linearly

independent, or, equivalently, r((E + DCl,a)P0
T ) =

K/2. The second identity is derived analogously.

We will use the previous proposition in order to prove
our main result, whose demonstration can be found in
the Appendix:

Theorem 1: If g is a high pass filter of length L of at
least K = L/2− 1 vanishing moments, then the polyno-
mial extension yields an invertible transform Gpol.

Remark: As a consequence, polynomial extension
yields a family of 2K border filters: in fact, the K first
and K last rows of Gpol contain the respective left and
right analysis biorthogonal boundary filters. In [3], a
similar set of 4K biorthogonal border filters was given,
but we have just proved that, by using only 2K filters,
PR is also achieved.

5 EXPERIMENTAL RESULTS

Length L Daubechies filters have exactly L/2 = K+1 >
K vanishing moments, so Theorem 1 assures that poly-
nomial extension always satisfies PR property when us-
ing such prototype filters. The associate transform ma-
trix Gpol is invertible; the corresponding left and right
analysis boundary filters are alternately low pass and
high pass, with lengths K + 2,K + 4, . . . , L− 2. When
using Daubechies filters of length L = 10 and polyno-
mial extension, we obtain K = 4 boundary filters per
border. Table 1 and Table 2 show the coefficients of the
four left and right border filters, respectively.
For the synthesis stage, it is clear that the first K and
last K rows of the inverse of Gpol provide the set of
biorthogonal synthesis boundary filters. Tables 3 and
4 display the family of the four left and right synthe-
sis boundary filters corresponding to the ones given in
Tables 1 and 2.
We have also studied the behaviour of the transform vec-
tor. Considering an original signal which corresponds
to a polynomial of degree 7, and Daubechies filters of

TABLE 1: Left analysis boundary filters
l1 25.234 -55.969 44.44 -12.282 -.012 .003
l2 .036 .013 -.42 .814 -.603 .16
l3 4.74 -6.686 4.574 -1.276 .077 -.006 -.012 .003
l4 -.077 .219 -.068 -.216 -.138 .724 -.603 .16

TABLE 2: Right analysis boundary filters
r1 .16 .603 .724 .138 -.243 -.032 .086 -.023
r2 -.003 -.012 .006 .077 -.004 -.256 .282 -.09
r3 0 0 .006 .077 -.004 -.256 .282 .08
r4 0 0 -.003 -.012 .083 -.142 .1 -.025

TABLE 3: Left synthesis boundary filters
l̃1 -.057 -.088 .51 .038 .281 -.009 -.027 .0006
l̃2 -.023 -.266 .109 .084 .628 -.014 -.007 .0001
l̃3 .027 -.089 -.166 .018 .674 .009 .172 -.003
l̃4 .007 .711 -.052 -.238 .151 .076 .6 -.012

TABLE 4: Right synthesis boundary filters
r̃1 -.2 -8.3 .7 -18.5 -1.2 -4.1 1.4 -94.8
r̃2 -.6 -28.8 2.4 -68.7 -3.7 -15.9 2.6 -357.7
r̃3 -1.4 -65.5 5.3 -165.2 -7.5 -53.8 4.3 -812.7
r̃4 -2.6 -122.6 9.6 -322.4 -12.9 -134.7 6.6 -1528.8

length 10, in Figure 2 we compare its transform vectors
obtained by using the classical periodic extension and
using polynomial extension. We observe that periodiza-
tion introduces discontinuities at the edges, which pro-
duce artificial high frequencies in the transform domain,
while the performance of the polynomial extension is
clearly better. Symmetric extension would not intro-
duce such discontinuities either, but it is an expansio-
nist method when using paraunitary (non linear-phase)
filters; for this reason, we only compare the (invertible)
polynomial extension to the (invertible) periodic exten-
sion. Finally, notice that, although Daubechies filters of
length 10 have only 5 vanishing moments, polynomial
extension overcomes the periodization technique, even
for polynomial test signals of greater degree.

6 CONCLUSIONS

In this paper we have proposed a non expansionist poly-
nomial extension method as a technique for processing
finite length signals via paraunitary FIR filter banks.
We have first presented a new and general criterium
for the invertibility of linear extension methods. It has
been used to prove that polynomial extension transfor-
mation guarantees perfect reconstruction of the origi-
nal finite signal at the synthesis stage, when using filter
banks with a minimum number of vanishing moments.
As a consequence, polynomial extension yields a new
set of biorthogonal boundary filters. Experimental re-
sults show that this technique outperforms the classical
extension methods, as it avoids artificial discontinuities
and achieves PR with paraunitary filter banks.
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Figure 2: Transform vector of a polynomial test signal
of degree 7 via Daubechies filters of length 10, by using:
periodization (top) and polynomial extension (bottom).

APPENDIX: PROOF OF THEOREM 1.
Proposition 1 guarantees that it is necessary and suf-
ficient to check that the null space of the matrices
(E + DW)P0

T and (E + FV)P1
T is zero. Let us con-

sider any vector x ∈ RK/2 such that (E + DW)P0
T x =

0K×1; our aim is to show that x is zero.
Considering the K samples of the signal P0

T x, we ex-
trapolate this vector by appending 2K samples per bor-
der in a polynomial way, so as to form xpol. This way,
xpol is a discrete polynomial of degree < K; we process
it by means of the 2-channel cell, and obtain:

z = H3K×5Kxpol =

=




D E F 0K 0K

0K D E F 0K

0K 0K D E F







W2P0
T x

WP0
T x

P0
T x

VP0
T x

V2P0
T x




=

=




(DW2 + EW + F)P0
T x

FVP0
T x

(E + FV)VP0
T x


 .

We have applied the fact that DP0
T = 0K×K/2 and

the assumption (DW + E)P0
T x = 0K×1. As xpol is

a polynomial sequence of degree < K, the hypothesis
about the K vanishing moments guarantees that the
even components of z (say, the high pass coefficients
of xpol) are zero. In particular, the K/2 central even
components of z are the even elements of FVP0

T x,
which must be zero. But the even rows of F are li-
nearly independent and generate the rest of the rows,
so the whole vector FVP0

T x must be zero; moreover,
this means that we can write VP0

T x = P1
T y for

some vector y. Then, the last K components of z are
(FV + E)P1

T y = F(VP1
T−P0

T CT )y, where we have
used that EP1

T = −Q0KFCT = FP0
T CT , which is a

consequence of the preliminaries given in Section 2, iii).
Thus, we have another vector such that F(·) has null
even components, so it must be identically zero for the
same reason. We summarize that

zT = [z1, 0, z3, 0, . . . , zK/2−1, 0,01×2K ].

In other words, not only the 3K/2 high pass coefficients
of the polynomial xpol are zero, but also its last K low
pass coefficients. Recall that the 3K/2 low pass com-
ponents form another polynomial of degree < K; but it
has more roots than its degree, so it must be the null
polynomial. We conclude that z = 03K×1. Finally, by
computing P0

T x = [FT ET DT ]z = 0K×1, we derive
that x must be null. Analogously, we would show that
r((E + FV)P1

T ) = K/2, finishing the proof.
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