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ABSTRACT

This paper investigates the performance of the filtered-X
LMS (FXLMS) and leaky filtered-X LMS (LFXLMS)
algorithms in a nonlinear system. In addition, we derive
the nonlinear filtered-X LMS algorithm (NLFXLMS),
which is obtained by considering the nonlinear system
function for the determination of the gradient of the cost
function. We show that the fact of not using the exact
gradient implies in a performance reduction of the
adaptive algorithm. The adaptive algorithms are examined
in the context of active noise control applications, which
possess nonlinear components. Through numerical
simulations we discuss the capabilities of the examined
adaptive algorithms.

1. PROBLEM STATEMENT

The area of active control of sound or vibrations has
received considerable attention in recent years. It has been
benefited by the continuous improvement of digital signal
processors. This fact permits that more sophisticated
and/or efficient control algorithms can be implemented. A
widely used algorithm in active control systems is the
filtered-X LMS (FXLMS) algorithm. Such popularity is
due to its simple implementation and robustness. This
algorithm continuously modifies the adaptive filter
weights, using the stochastic gradient method, which
attempts to minimize the instantaneous quadratic error
( 2 ( )e n ). In active noise and vibration control applications,

inherent nonlinearities are present in the system
components (typically due to power amplifiers, sensors
and actuators) as well as other originated by
finite-precision effects from the algorithm implementation.
A typical diagram illustrating an active noise control
application is depicted in Fig. 1, where ( )d n  and ( )e n

represent the primary and error signals, respectively;
( )nX  is the reference signal; ( )z n  is a Gaussian

measurement noise, zero-mean with variance 2
zs . The

secondary path is composed of a nonlinear memoryless
block denoted by [ ]f × , which concentrates all the system

nonlinearities, and a linear block modeled by a FIR filter
given by 0 1 1[ ]Ms s s

-

=S L . The set of the linear and

nonlinear blocks represents the secondary path.
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Fig. 1. Basic active noise control setup in a duct, including the

system nonlinearities. (a) Physical setup, (b) block diagram.

When the LMS algorithm is implemented in this kind of
system, it is common to study the effect of the nonlinearity
on the adaptive algorithm performance [2,7]. The usual
recursive expression to update the adaptive filter weights
is the one derived for the standard FXLMS algorithm [1],
given by [2]

( 1) ( ) ( ) ( )fn n e n n+ = +mW W X , (1)

with ( )f nX  denoting the filtered reference vector, given

by
1

0

( ) ( )
M

f i
i

n s n i
-

=

= -�X X , (2)

and the error signal obtained from Fig. 1(b), written as

( ) ( ) [ ( )] ( )se n d n f y n z n= - + . (3)
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The output of the linear block, ( )sy n , is determined by
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Note that, through (4) into (3), the error signal is a
nonlinear function of the adaptive weight vector. Since the
LMS algorithm minimizes the instantaneous quadratic
error given by 2( ) ( )J n e n= , when the gradient of ( )J n  is

computed, a different updating equation from (1) is
obtained. By determining the gradient of the cost function
using (3), we obtain

2 ( )( )
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,          (5)

where in the term [ ( )]sf y n¢ , the prime represents

differentiation of [ ]f ×  with respect to ( )sy n . In this way,

as the adaptive filter weights are updated according to the
gradient-descent algorithm, the weight updating
expression reads

( 1) ( ) ( )
2

n n J n
m

+ = - Ñ WW W . (6)

From (4), (3) and (5) into (6), we obtain

( 1) ( ) ( ) [ ( )] ( )s fn n e n f y n n¢+ = +mW W X . (7)

Note that in (1) the term [ ( )]sf y n¢  is disregarded.

Consequently, the performance of the adaptive controllers
will also be. The recursive expression (7) uses the exact
gradient, i.e., the adaptive algorithm becomes a modified
version of the traditional FXLMS algorithm, denoted as
nonlinear FXLMS (NLFXLMS). Fig. 2 shows the
resulting adaptive system scheme for both cases.
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Fig. 2. Adaptive algorithm setup. Weight updating according to
(1) or (7).

Another adaptive algorithm frequently used is the leaky
FXLMS (LFXLMS). In this algorithm, a penalty term,
proportional to the quadratic norm of the filter weights
vector ( )nW , is added to the classical cost function,

expressed as

2( ) ( ) ( ) ( )T
LJ n e n n n= + gW W , (8)

where g  is a weighting factor denoted as leakage factor,

being 0g ³ . The introduction of a leakage factor in the

LMS algorithm has been typically used for improving the
algorithm performance regarding the following points:
ill-conditioned input signal [3], algorithm stalling when
the correction term is too small, overflow due to
finite-precision arithmetic, to name a few. In active noise
and vibration control applications introducing a leakage
factor in the adaptive algorithm can attenuate the
undesirable effects due to nonlinearities. In this case, the
effect of the leakage factor is to control the level of the
adaptive filter weights, hence, avoiding to drive the
actuators into the nonlinear region [4]. In this work, we
use the conventional weight update equation with leakage
[5], given by

( 1) ( ) ( ) ( )fn n e n n+ = n +mW W X , (9)

where 1n = -mg , with 1n < . The purpose of not using the

exact gradient, as derived in (5), is to show the usefulness
of the LFXLMS algorithm in the presence of
nonlinearities. In the section of simulation results, we will
see that by comparing (7) and (9) similar results are
obtained, regarding the performance of the adaptive
controller. The advantages of the latter are evident, we do
not need to estimate the nonlinearity of the actuator, and
so the algorithm is less computationally expensive.
However, the fact of not using the exact gradient makes
the behavior noisier of the adaptive filter weights.
The present work is part of a project examining the effect
of the system nonlinearities on the adaptive controller
performance. In this paper, we present several numerical
simulations, comparing the performance of the adaptive
algorithms FXLMS, NLFXLMS, and LFXLMS,
represented by the weight update expressions (1), (7), and
(9), respectively. From this comparison, helpful
implementation insights can be obtained.

2. PRACTICAL CONSIDERATIONS

2.1 Nonlinearity Model

The saturation curve is the model of the nonlinear
function, which represents a large class of nonlinear
systems. This kind of curve can be modeled by the
hyperbolic tangent function ( ) tanh( )f r r= . Alternatively,

this class of nonlinearity can also be modeled by the error
function, expressed as

2

22

0
( )

t
r

Fnlf r e dt
-

= � (10)

and
2

22( )
r

Fnlf r e
-

¢ = (11)



with Fnl being a constant factor, which controls the
nonlinearity degree of ( )f r ; ( )f r¢  is the derivative of

( )f r  with respect to r. The error function is a particularly

attractive model for the system nonlinearity because it
permits a relatively tractable mathematics. This function
has been extensively studied and for further details, the
reader is referred to [6]. As Fnl  approaches zero the
higher the nonlinearity degree of ( )f r  is. In the limit, for

0Fnl ®  we obtain a hard limiter characteristic.

2.2 Implementation of Eq. (7)

The exact gradient in (7) gives rise to an increase in the
computational cost of the weight update equation.
However, it can be greatly reduced by implementing the
computation of the ( )f r¢  term through a look-up table. In

this case, there is a tradeoff between accuracy and
complexity, which depends on the number of elements of
the table. In considering an active noise control (ANC)
application [4], the nonlinearities occur in the power
amplifier and/or in the canceling loudspeaker. However,
due to the state-of-the-art of electronic systems, it is very
common to find power amplifiers having very low
distortion rates. Thus, in ANC systems the nonlinearity
can be mainly attributed to the loudspeaker.
Also, as is usual in active control applications, the transfer
functions of S and [ ]f ×  are previously unknown, thus,

they need to be estimated according to the methods
presented, for instance, in [8].

3. SIMULATION RESULTS AND DISCUSSIONS

In this section, the performance of the adaptive algorithms
represented by expressions (1), (7), and (9) are compared.
For this purpose, a simple active noise control system
containing a primary noise source, a canceling loudspeaker
and an error microphone has been considered. The
primary signal ( )d n  is obtained by passing the reference

signal through a low-pass FIR filter representing the
primary path, given by [0.0179, 0.1005, 0.279, 0.489,
0.586, 0.489, 0.279, 0.1005, 0.0179]. The variance of the
measurement noise ( )z n  is 0.0001. The comparison is

carrying out by using several nonlinearity degrees. The
mean squared error (MSE) curves are obtained by the
expression 2 2

1010log { [ ( )] [ ( )]}MSE E e n E d n= . All the

Monte Carlo (MC) simulations were obtained from an
average of 500 independent runs.
Example 1: For this example the experimental conditions
are the following: the reference signal is white, zero mean
and with unit variance; the step size is given by 0.02m = ;

the impulse response of the secondary path, S, is [0.7756,
0.5171,-0.362]. The value of Fnl  in (10) is 4. This
represents a weak degree of nonlinearity. In Fig. 3, we

show the MC simulation results. In Fig. 3(a) and 3(b), we
can see that an almost identical behavior of the adaptive
algorithms (1) and (7) has been obtained. The only
difference is in the speed of convergence. The minimum
MSE values (Fig. 3(b)) are 0.0017 and 0.0016 for the
FXLMS and NLFXLMS algorithms, respectively. The
faster convergence is explained by examining the term

[ ( )]sf y n¢  in (7). Its histogram is depicted in Fig. 4(c)

(solid curve). It can be seen from that figure, that the
histogram is concentrated around a value less than one,
resulting in a slower speed of convergence. Due to the
nonlinearity degree used in this example, the LFXLMS
algorithm does not present any significant differences
regarding the other two algorithms. Thus, for the sake of
clarity the corresponding curves are not presented.
Example 2: In this example we use the same conditions as
in the previous one, but the value of Fnl  is 1, which
represents a higher degree of system nonlinearity. In this
numerical simulation, the limiting effect of the leakage
factor on the adaptive filter weights can be observed. The
MC simulation results for the adaptive algorithms are
shown in Fig. 4. As can be seen from Fig. 4(a), when the
standard FXLMS is used, the adaptive filter converges to
inadequate values. The convergence is reached after
10000 iterations, while for the NLFXLMS and LFXLMS,
it is achieved after 1000 iterations. The minimum MSE
values (Fig. 4(b)) are 0.420, 0.095 and 0.114 for the
FXLMS, NLFXLMS and LFXLMS algorithms,
respectively. The LFXLMS algorithm, with 0.1g = ,

presents nearly the same performance as the NLFXLMS
algorithm. The advantages of the former over the latter,
which uses the exact gradient, is that we do not need to
estimate the nonlinearity model for implementing its
derivative. In addition, in certain applications to obtain
such an estimate is not always possible. For that reason,
the LFXLMS algorithm represents an interesting
alternative to implement in the adaptive controller.
Regarding the LFXLMS, we also performed numerical
simulations with 0.05g =  and 0.2g = , resulting in the

following minimum MSE values, 0.152 and 0.137,
respectively. This fact indicates that there exists an
optimum value for g , with which we can reach the same

minimum MSE value obtained by the NLFXLMS. The
fact of the LFXLMS algorithm is not using the exact
gradient results in a noisier behavior for the controller
weights. This can be seen when a single realization is
performed. Figure 4(c) shows the histogram for the term

[ ( )]sf y n¢ (dotted curve). Comparing with the previous

example, we can see that due to the higher nonlinearity
degree used in this case, the histogram presents a spread
range of values.
Extensive numerical simulations for several primary and
secondary paths and for white and colored input signals



have been carried out. In all cases, similar conclusions to
previous ones are verified.
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Fig. 3. MC simulation comparing the FXLMS and NLFXLMS
algorithms (average of 500 runs). (a) E[W(n)], dotted lines:
Eq. (1); solid lines: Eq. (7). (b) MSE, gray curve: FXLMS; black
curve: NLFXLMS.
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Fig. 4. MC simulations comparing the FXLMS, LFXLMS, and
NLFXLMS algorithms (average of 500 runs). (a) E[W(n)],
dotted lines: Eq. (1); gray lines: Eq. (9); solid lines: Eq. (7). (b)
MSE, light gray curve: FXLMS; dark gray curve: LFXLMS;
black curve: NLFXLMS. (c) Histogram of [ ( )]sf y n¢ , solid

curve: Example 1, dotted curve: Example 2.

4. CONCLUSIONS

The nonlinear filtered-X LMS (NLFXLMS) algorithm has
been derived, which in a nonlinear active control (noise or
vibration) application outperforms the implementation of
the standard FXLMS algorithm. However, by introducing
a leakage factor in the FXLMS, we can attain similar
performance as with the NLFXLMS without requiring the
estimation of the nonlinear function.
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