APPLICATION OF THE NEURAL NETWORKS FOR
TEXT-TO-PHONEME MAPPING

Eniko Beatrice Bilcu', Petri Salmela®, Janne Suontausta®, Jukka Saarinen

4

L24Digital and Computer Systems Laboratory, Tampere University of Technology,
Korkeakoulunkatu 1, FIN-33720, Tampere, Finland
3Nokia Research Center, Speech and Audio Systems Laboratory,
P.O. Box 100, FIN-33721, Tampere, Finland

e-mail:

ABSTRACT

In this paper we present the results on the use of
neural networks for text-to-phoneme mapping. For
this mapping, we have compared the performances of
the Context Dependent Multilayer Perceptron network
with the Recurrent Neural Network. The results
(number of parameters vs neural network model vs
phoneme accuracy) are given for American English.
Also some guidelines for selecting the appropriate
network structure together with some methods for
improving the phoneme accuracy are presented.

Keywords: Neural Networks, Multilayer Perceptron
Network, Recurrent Neural Network, Text-to-Phoneme
Mapping.

1 INTRODUCTION

Speech recognition has been one of the most important
research topic in human-computer interaction. Our pa-
per deals with a narrow area of human computer in-
teraction, namely the text-to-phoneme (TTP) mapping
[3]. In speaker independent speech recognition systems
based on phonemes, there is a necessity to define a dic-
tionary in terms of phonetic transcriptions. The tran-
scriptions can be based on a predefined look-up table or
some mathematical model that gives the transcription
for any given word. Clear, the benefit of the previous
method is that it is more accurate than the latter one.
However, the model based approach requires less mem-
ory and can be straightforwardly applied for new words.

Neural networks (NNs) has been shown to provide a
solution for this problem. In [4], MLP networks are ap-
plied to the TTP mapping, the mapping is based on the
context information in which the letters occur. However,
in that paper there is no comparative study on the use of
different network structures. For real time applications,
the requirement is to obtain fast networks that uses a
small amount of memory and also can provide accurate
recognition rates. Usually, each letter and each phoneme
are represented as a binary vectors for the neural net-
work. If these vectors has large dimensions, also the
input-output layers of the NN scales correspondingly,

pilcub@cs.tut.fi

that easily results in large number of weights especially
if context vectors are used. Although the context depen-
dency has been shown to increase the phoneme recog-
nition accuracy, the large number of the parameters of
such NN is not desired from the application point of
view. Based on these well known observations we have
studied the recognition results obtained by NNs with
simple structures, such as Recurrent Neural Networks
(RNNs) compared with the context dependent MLP ap-
proaches.

2 DATABASE

The dictionary used for training and testing the neural
networks in our experiments was the Carnegie Mellon
University (CMU) pronunciation dictionary. In order to
implement TTP with NNs, the data from the dictionary
has to be preprocessed in the following manner:

e The words and their phoneme transcriptions were
aligned such that one-to-one correspondence was
obtained between the letters of each word and its
phoneme symbols. The alignment was done using
a Viterbi algorithm [7].

e In order to eliminate the ambiguity that can occur
for multiple pronunciations of the same word, only
one phonetic transcription was chosen from each
entry into the dictionary.

e The whole dictionary was splitted into two parts.
For the first part we have randomly chosen 80%
from the whole CMU dictionary (each word with a
single phonetic transcription). The training dictio-
nary used in our simulations contains the phonetic
transcriptions of 86821 words. The number of pat-
terns (input vectors) in the input training set was
around 65 x 10%. The second part contained the
rest 20% (22015 words) of the whole CMU dictio-
nary and it is used for testing the phoneme accuracy
of the models. The set used for training the NN,
and the set used for testing the NNs did not contain
words in common.

e Once we have obtained the training and test set,
both sets are processed as follows: First, the order
of the words in both sets were randomized. Af-
ter that, each letter in a word is coded using bi-
nary vectors such as shown in Table 1, where \0
is introduced to represent the graphemic null. The
number of letters in the English dictionary is 26,
and together with a graphemic null we have 27 let-
ters. Therefore, each vector, representing a letter
in a word, or space between words, have 27 ele-
ments. Similar coding scheme was also applied for
the phoneme transcriptions. Since English can be
represented with 47 phonemes including the null
phoneme and pseudo phonemes, the dimension of
the binary vector that codes the phoneme is 47 such
as shown in Table 2.

| Letters || Corresponding binary vector |

a 1000...000
b 0100...000
y 0000...100
z 0000...010
\0 0000...001

Table 1: Orthogonal letter codes. Each vector has 27
elements of which only one is set to value of one.

| Phonemes || Corresponding binary vector |

- 1000...000
aa 0100...000
zh 0000...001

Table 2: Orthogonal phoneme codes. Each vector has
47 elements of which only one is set to value of one.

3 NEURAL NETWORK ARCHITECTURES

The neural network structures compared in our paper
were the Multilayer Perceptron (MLP) network and the
Recurrent Neural Network (RNN).

3.1 Multilayer Perceptron (MLP)

For the MLP, in order to take into account the grapheme
context, a number of letters on each side of the current
letter were also used as input to the network. We have
tested the MLP having as input three adjacent letters
and five adjacent letters with the middle one being the
letter to be transcribed. Also in our paper we present
the phoneme accuracy obtained with MLPs that used
the letters just from the left context. These results are
included just for benchmark purposes.

In Figures 1 and 2, the two structures of the multi-
layer perceptrons used in the simulations are shown. In
Figure 1, the input vector u(n) consists of three adjacent
letters, whereas in the second implementation shown in
Figure 2 the input vector is obtained by concatenation of
five vectors corresponding to five adjacent letters. Both
MLPs have one input, hidden and output layer y(n) and
both of these networks are fully connected. This means
that each neuron in the hidden layer receives inputs from
each unit in the input layer. Furthermore, each hidden
unit sends its output to all the units of the output layer.

Hidden layer

Output layer
weights

Previous
letter

N
7

I
PO Wozes /i

The probabilities

Current for phonemes

letter

Output layer
having 47 neurons
y(n)

Next

letter

Hidden layer
having 60
neurons

bias
Input layer
having 81 neurons

u(n)

Figure 1: Multilayer Perceptron with 3 input letters,
which are represented with the binary vectors shown in
Table 1.

Hidden layer
ights
Previous < weights Output layer
second letter weights
Previous < , ’/. l/
first letter \Va N
"!" The probeilities
' %
A‘A’ 1 for phonemes
v 1
Current | 1
letter ! i
i
Next first ! Output layer
letter ' 7 having 47 neurons
// yo)
7 Hidden layer
4 having 60
Next second | neurons
letter

Input layer
having 135 neurons
u(n)

Figure 2: Multilayer Perceptron with 5 input letters,
which are represented with the binary vectors shown in
Table 1.

For the hidden layer, we have used the hyperbolic

tangent activation function which can be given as:

_ 1 —exp(av;)

TiTIT exp(av;)

(1)
where a is a constant, v; is the induced local field of
the i** neuron and z; is the output from the i** hidden
neuron.

The activation function of the output layer was chosen
to be the softmax function:

E exp(bv;)

=1

P, =

where b is a constant, N is the number of outputs and
P; is the it output.

The softmax activation function give a good approxi-
mation of the class posterior probabilities [2, 4]. There-
fore in the testing procedure when one pattern (one let-
ter or a group of letters) is presented at the input of
the network, at the output we obtain a vector with 47
elements that has a maximum value in the position cor-
responding to the recognized phoneme. The recognized
phoneme is then finded using the following criterion:

C.= argmaz ()
7

where C, is the index of the recognized phoneme from
the list of total phonemes (see Table 2).

3.2 Recurrent Neural Network (RNN)

For the RNN there is no necessity to introduce context
dependency into the input vector since the output state
is feedback to the input. The context dependency is in-
corporated into the feedback. The structure of the fully
connected RNN used in our experiments is depicted in
Figure 3. The input vector u(n) is formed by the binary
vector of the current letter and y(n) is the binary vec-
tor containing probabilities estimated for the phonemes.
All outputs are feedback to the input and they represent
the network state. The first 47 states are taken as the
outputs of the network and represents the correspond-
ing phoneme. The activation function used in this case
was the softmax.

4 TRAINING THE NETWORKS

The training of the RNN was based on the truncated
back-propagation through time algorithm (BPTT). The
training procedure may be derived by unfolding the tem-
poral operation of the network into a layered feed for-
ward network. In order to maintain a feasible compu-
tational complexity, the relevant history of input data
and network states are saved for a fixed number of time
steps. A detailed description of the training algorithm
can be found in [1, 2]. The number of time steps for
which the data is stored is called the truncation depth

delay units
1=
]
I

y(n-1)

bias The probabilities

for phonemes

Current letter
u(n)

Output layer
having 47
neurons
y(n)

f

Input layer
having 88 neurons
u(n)

Figure 3: Fully connected Recurrent Neural Network.

“) @ N “(E\‘/ %\‘/ mﬂ‘/ .

o e °
® | o [) K ® | 7

o [Lb) ¢ Ly o [4 iy I

X2 X3))

v

= X J

Figure 4: Recurrent Neural Network unfolded in time
for a truncation depth of 5 time steps.

[1, 2, 6]. We have implemented two RNNs, one with a
truncation depth of 3 time steps and the other one with
a truncation depth of 5 time steps (shown in Figure 4).
The MLPs tested in our paper were trained using the
back-propagation algorithm.

Because the training dictionary contains a large
amount of data, in order to have a faster training, all the
networks are trained in on-line mode and the weights are
updated after presentation of each training example.

The complexity of the compared neural networks are
given in Table 3, where by MLP1 we have denoted the
Multilayer Perceptron having just one left-side context
dependence, MLP2 is the Multilayer Perceptron with
two left dependences, MLP3 is the Multilayer Percep-
tron with one letter on both sides of the current letter,
MLP5 is the Multilayer Perceptron with two letters on
both sides of the current letter, RNN3 is the Recur-
rent Neural Network trained with a truncation depth of
3 time steps and RNN5 is the Recurrent Neural Net-
work trained with a truncation depth of 5 time steps.
Note that each compared network contains also the bias
terms. As we can see from Table 3, the RNN models
needs less memory to store the final weights than the
other implementations.

5 EXPERIMENTAL RESULTS

In order to test the recognition performances of each
neural network a large number of simulations were per-

formed. During the simulations different parameters
settings were tested. The synaptic weights were initial-
ized with values chosen from an uniform random dis-
tribution between —0.02 and 0.02. All the networks
were trained using a constant learning rate A = 0.01.
The constants a and b for the activation functions were
chosen equal with 5. In order to have a fair compar-
ison the number of hidden neurons in the MLPs and
the number of state neurons in the RNNs were chosen
the same N = 60. During the training, some interme-
diate values of the synaptic weights were saved and the
testing procedure is performed using these values. The
synaptic weights were saved at 1%, 2%,...,100% from the
whole training set. In Figure 5 the phoneme accuracy
of test set is plotted as a function of this percentage.
Figure 5 shown that the higher phoneme accuracy are
obtained with MLP3 and MLP5. This was expected
since the MLP3 and MLP5 incorporates context depen-
dences from both sides of current letter. Approximately
the same phoneme accuracy were obtained for MLP1,
MLP2, RNN3 and RNNb5. This is because all these net-
works incorporates context dependence just on the left
side of the current letter. An interesting result can be
observed in Figure 5 comparing the phoneme accuracy
for RNN3 and RNN5. Since the phoneme accuracies,
were the same for RNN3 and RNN5, we can conclude
that in the application addressed here there is no neces-
sity to train a RNN model with a truncation depth of
more than 3 time steps. Therefore, using a RNN with a
small truncation depth we can obtain the same phoneme
accuracy but with considerably less computational ef-
fort. Also, comparing the sizes of the networks given in
Table 3 and the recognition results shown in Figure 5
we can conclude that the MLPs with both sides context
dependencies performs better than the RNN, but they
need a large number of weights.

Input | Output | Hidden Syn.
Length | Length | Neurons | Weights

MLP1 54 47 60 6167
MLP2 81 47 60 7787
MLP3 81 47 60 7787
MLP5 135 47 60 11027
RNN3 27 47 60 5280
RNN5 27 47 60 5280

Table 3: The size of Neural Networks.

6 CONCLUSIONS

In this paper, MLP network and RNN architectures are
tested for the problem of text-to-phoneme mapping. Ac-
cording to results we can conclude that the RNN pro-
vides smaller phoneme accuracy than the MLP with
context dependencies from both sides. However, when
MLP have only the left context, the phoneme accuracy

a1
o
T

N
o

Phoneme accuracy

—4A— MLP1

20H — MLP2 ||
—<— MLP 3
I -©- MLP5
10y ~— RNN 3 |7
-~ RNN5
‘

0 20 40 60 80 100
Percentage from the training set

Figure 5: Phoneme accuracy for the tested NNs.

of MLP and RNN are approximately same. Further-
more, the memory needed for storing the weights is
much smaller in the case of RNNs. Also, we have ob-
served in our case, that the training of the RNN can be
performed by using a small truncation depth without
loss in the phoneme recognition accuracy. The results
also indicate that inclusion of also right-side context de-
pendency into the RNN could lead to improved perfor-
mance.
References

1. S. Haykin, Neural Networks - A Comprehensive
Foundation, 2nd Ed., Pretince Hall, New York,
1999.

2. C. Bishop, Neural Networks for Pattern Recogni-
tion, Oxford University Press, Oxford, 1995.

3. N. McCulloch, M. Bedworth and J. Bridle, NetS-
peak - a re-implementation of NetTalk, Computer
Speech and Language 2, 1987, p. 289-301.

4. K. Jensen and S. Riis, ”Self-Organizing Letter
Code-Book for Text-to-Phoneme Neural Network
Model”, Proceedings of the International Confer-
ence on Spoken Language Processing, 2000.

5. M. Embrechts and F. Arciniegas, ”Neural Networks
for Text-to-Speech Phoneme Recognition”, Proceed-
ings of the IEEE International Conference on Sys-
tems, Man and Cybernetics, Vol. 5, 2000, pp. 3582-
3587.

6. M. Adamson and R. Damper, "A Recurrent Net-
work that Learns to Pronounce English Text”, Pro-
ceedings of the International Conference on Spoken
Language Processing, Vol. 3, 1996, pp. 1704-1707.

7. V. Pagel, K. Lenzo and A. Black, "Letter to Sound
Rules for Accented Lexicon Compression”, Proceed-
ings of the International Conference on Spoken Lan-
guage Processing, Vol. 5, 1998, pp. 2015-2018.

