ARCHITECTURE AND APPLICATION PARTITIONING FOR RECONFIGURABLE
SYSTEM DESIGN

K. Ben Chehida, M. Auguin, S. Raimbault

I3S, University of Nice Sophia Antipolis, CNRS

ABSTRACT

This paper presents a Genetic Algorithm (GA) based approach
for Hardware/Software partitioning targeting an architecture
composed of a processor and a dynamically reconfigurable
datapath (FPGA). From an acyclic task graph and a set of Area-
Time implementation trade offs points for each task, our GA
performs HW/SW partitioning and scheduling such that the
global application execution time is minimized. The efficiency
of our GA is established through its application to a AC-3
decoder function and its performance is compared with a greedy
agorithm.

1. INTRODUCTION

The recent improvements in size, flexibility and reconfiguration
speed of FPGAs make this technology very attractive for low
cost and high speed embedded system design. Connecting a
reconfigurable device to a programmable processor in a single
chip [1, 2], constitutes a very flexible and efficient architecture
that can be used in a wide variety of embedded devices (for
example, intelligent terminals or sensors such as a networked
camera[3]).

Rapid development of embedded systems using this
software/reconfigurable technology suffers from lack of
advanced system level design tools which exploit efficiently the
parallelism and the dynamic reconfiguration capabilities of the
architecture. The aim of the project EPICURE! is to introduce a
design methodology for dynamically reconfigurable computing
platforms composed of a genera purpose processor (CPU) and a
dynamically reconfigurable datapath (FPGA..). From
performance/cost estimates of implementations of tasks of the
application on the processor and on the reconfigurable circuit,
we have developed a partitioning tool which provides a mapping
and a schedule of the tasks on the architecture.

The organisation of this paper is as follow. In Section 2 we
formulate our problem to match the application and the
architecture models. The description of our partitioning approach
based on a genetic algorithm is provided in Section 3, and in
Section 4 is outlined a greedy agorithm. Results and
performance comparison on a AC-3 decoder task graph example
are presented in Section 5. We conclude with Section 6.

2. PROBLEM FORMULATION

The target architecture is composed of a processor connected to
adynamically reconfigurable unit. This dynamic reconfiguration

1 This project is supported by the French Ministry of Research and

Education through the Réseau National des Technologies Logicielles.
The partners of the project are CEA, Thales, Esterel Technologies,
LESTER - Université de Bretagne Sud and 13S - Université de Nice
Sophia Antipolis’CNRS.

technology is investigated by numerous research groups (e.g.
[4],[5]) and would be very attractive for commercial products.
Exploiting dynamic reconfiguration requires rather a coarse
grain paralelism to reduce the relative cost of reconfiguration
and data transfers. The application model considered is a
function or task level data flow graph specification. From this
task graph, the goal of partitioning is to select whether to put
each task into SW or HW such that the whole execution time is
minimized. The partitioning algorithm takes into account the
dynamic reconfiguration capabilities of the hardware unit.
Currently, partia reconfigurations of the circuit are supported
(the reconfiguration time depends on the number of
Configurable Logic Blocks (CLBs) involved in the
reconfiguration) without allowing overlaps between computation
and reconfiguration. Complete reconfigurations of the circuit
can be considered as well. The approach is based on a genetic
algorithm that realizes a design space exploration by generating
different mappings of the tasks on the processor and the FPGA.
Evaluation of the execution time of the architecture for each
mapping requires to define a schedule of the tasks including
reconfigurations for context switching and data transfers
between tasks. This evauation is performed with a clustering
heuristic [6].

Each node of the acyclic data flow graph denotes a task that can
be mapped to the SW or the HW. the amount of data (bytes) that
must be transferred between two connected tasks is associated
with each edge. A task can begin its execution when all its parent
tasks and incoming edges have completed their executions.

T exec
L‘
—)
T _exec / \ T exec

T exec

A T _exec

SN,

CLB CLB
Fig. 1: Task Graph, Area-Timetrade off curves

SW and HW runtimes of each task are estimated in terms of
Area-Time trade off points. SW runtime performance is
estimated through profiling and HW (FPGA) performance / area
estimations are performed at the behavioral level. The number of
implementation points can differ for each task depending on the
exploitation of the available parallelism in the task [7]. Figure 1
shows an example of a task graph and the AreaTime
implementation points for each task. The area is evaluated as a
number of CLBs. A zero-CLBs implementation point of a task
denotes a SW only implementation. We assume that a shared
memory connects the processor and the reconfigurable unit with
two data buses of fixed speed. This interface involves

communication times to read and write data if two tasks
connected by an edge are placed one on the HW unit and one on
the SW unit. The transfer time depends linearly on the amount of
data bytes annotated on the edge [6]. Let o be the number of
bytes on edge € and A, be the number of bytes per packet
supported by bus|. Let 7j be the communication time of a packet
on | and be the access time per packet on that bus. Then the
time to communicate the data on edge € is given by:

t = {%}.(r +Q,) Q)

3. HW/SW PARTITIONING USING A GENETIC
ALGORITHM

We model and solve our partitioning problem through a Genetic
Algorithm. The encoding of any solution corresponds to the
binding of each task to an implementation point. Our encoding
method codes a chromosome C with an array of genes of length
N where N is the number of tasks. Each gene C(i) is an integer
representing a percentage. The maximum 100% value that can
teke C(i) is associated with the most CLBs-based expensive
implementation of task i. The selected implementation point is
the nearest point to C(i) on the area axis. All the solutions
delivered by this encoding method are viable. The chromosome
example presented in Figure 2 assigns tasks 1 and 4 to a SW
implementation and all the others to the HW. Tasks mapped to
HW have to be grouped into Contexts (or Clusters) to finaly
evaluate the effectiveness of the individual .

The Ningiv individuals forming the initial population are
randomly generated: the gene values of these chromosomes are
randomly chosen between 0 and 100.

T_exec

o

o)
(10,72,31,927)
== x%
$ 2 3 T
ot X F
CLBs \ CLBs
T _exec 4 \“7 =
T _exec
A 4 B 1 -
e 1
| * , (100%)
CLBs 4 16 crBs

Fig. 2: Chromosome encoding

The fitness of every chromosome (solution) delivered by GA is
evaluated allowing its ranking onto the current population. A
solution is evaluated by its overall execution time including the
reconfigurations for context switching and data transfers
between tasks.

Communication times computation:

The chromosome structure provides an dlocation of tasks to HW
and SW so that preliminary communication times can easily be
computed using (1). These communication times will be updated
after clustering.

Contexts definition (Clustering):

We use a Clustering approach as addressed in [6] to group tasks
in contexts. We first assign priority levels to tasks starting from
the graph leafs. The priority level of a task is the longest path
from the task to a leaf evaluated as computation and
communication costs (Fig. 3). To reduce the schedule length, we
need to decrease the length of the longest path by clustering

tasks along it in order to reduce the communication costs along
the path. The priority P; of task i is computed considering the
priority of its successors j and the communication time between
i and j according to equation (2):

P, =T _exec(r) + SUPU) (P + T_com(7, 7)) 2

The cluster size Sy is limited to the maximum FPGA size (in
practice, 80 to 85 % of the total number of CLBS).
Initially, all the tasks are sorted in the decreasing order of their
priority levels. We pick the unclustered task 7(t;,S) with the
highest priority level, where t; is the execution time and § the
number of CLBs defined by the implementation pointed by C(i)
in the chromosome, and mark it clustered. The available
resources of the current cluster Cg,, (initidly to Smax) are
decreased by S. This context building is iterated with tasks
I(t;,S) assigned to HW while:

§ < Resy(Can) ©)

Else, anew cluster is created and the process is repeated until all
the HW tasks are assigned to clusters. The reconfiguration time
depends on the quantity Ny of logic cells (CLBSs) needed for
mapping the context K on the FPGA. Let Tg be the time for afull
reconfiguration then the reconfiguration time per CLB is given
by:

T
TreconticLe = i (4)
We evaluate the reconfiguration time of the context K by:
Treconf (k) = Nk 'Treconf/CLB (5)

Fig. 3: Clustering and Communication time update

Tasks of the graph shown in figure 3 are annotated with the
parameters (t; /S)//P;. The priorities are computed before
communication times update. The GA alocates only task 5 on
the processor. The reconfiguration times of the three contexts are
Trecont (C1) = Trecont (C2) =10 and Tyecont (C3) = 7.
Communication time updates:

Once the contexts are defined, the algorithm updates the intra-
Context (within a context) and inter-Contexts (between different
contexts) communication times. Intra-Context communication
times are set to zero.

Let Ei(k) and E,(k) be respectively the incoming and outgoing
edges of context k. for each edge g 00 Eq(l) n Ei(k) of contexts |
and k. The communication time is updated by:

Tcom(Q) = Max (Tcom(Q)- Treconf(k)) (6)

Where Teom is the communication time computed using (1) (see
fig. 3). Hence, after updating communication times the global
execution time for the example given in fig. 3 is 84: that is the
cost of this solution.

Selection of solutions by GA is performed by the Tournament
technique. A number (Npgens) Of tournaments are performed,
each one opposes a given number of individuas randomly
chosen in the current population to finally select the fittest to be
one of the parents allowed to reproduce.

Genetic operators are used on the Nygrents individuals selected by
the Tournament technique to generate the Ngjigren SOlUtIONS
representing the new offspring. We perform a dynamic control
on the number of the individuals created by each operator based
on its efficiency over the previous generations. These operators
are:

Mutation operators:

Mutation randomly selects a gene (or a set of genes) and changes
its value. The mapping of atask can change from a SWto a HW
implementation, HW to SW, or the task may remain in HW but
using a different implementation point. Five mutation operators
are used in our algorithm. Two operators 2-Opt and 3-Opt from
the k-Opt family: neighbourhood search operators performing an
exploitation process by local optimization.

The Double Bridge operator permits large jumps in the solution
space assuring a pure exploration process. Two simple operators
are also used: the CutAndPaste operator (we cut the chromosome
at a random point and we swap the two portions) and the
Scramble operator (the genes between two randomly chosen
points are scrambled).

Crossover operators:

Two parent’'s chromosomes are cut at the same offset(s)
(randomly set) from their starting points and the portions
following the cut are swapped. Two crossover operators are used
in our agorithm. A simple point (1p-Cross) and a double point
(2p-Cross) crossover operator.

After generation of the new offspring, the renewa of the
population is performed according to the elitism principle.
Clones are not allowed in our renewa procedure because they
can invade the whole population leading to a genetic drift. When
anumber of generations Nge has passed without improvements
of the best individual, GA hats and displays the best
encountered solution. The user-specified parameters of this
algorithm are N,pgiy (initial population size), Neniigren (Offspring
size) and Nye (termination condition: number of populations
without improvements).

4. GREEDY PARTITIONING ALGORITHM

The partitioning problem can be addressed also using scheduling
heuristics. The greedy algorithm presented in [8] targets a
multiprocessor architecture. We have adapted this agorithm to
deal with an architecture composed of a processor connected to a
dynamically reconfigurable unit. Compared to the origina
agorithm, we use an ALAP scheduling and a backward critical
path length evauation. This ALAP scheduling agorithm
operates backward through the graph, starting from the terminal
tasks. It considers at each step the set of tasks that have their
successors allocated and scheduled. The algorithm selects from
this set the most time critical task, whatever the hardware or
software context available for this task.

The most critical task is alocated and scheduled to the context
that minimizes the estimated distance (in time) between the end
of execution of the task and the earliest start time of the initia
tasks of the graph (figure 4). Distances from each task to initial
tasks of the graph are calculated before partitioning using a
critical path length evaluation recursive algorithm.

Reconfiguration time
ﬁgth length 5->1 ¥ CLBs

ONN
.
p Schedulings
@/v % of task 5
6//2 PmcessorT [: E f j

ALAP Scheduling 4

Maximum Size

L

L3 v Feasible

Reconfigurable Unit

Task 5 is scheduled and allocated such that the maximum
of the minimum path lengths 5->1 and 5->2 is minimum.

Fig. 4. Scheduling and allocation in the greedy algorithm

These path lengths are evaluated for every implementation
points available for the task. Path length evaluation and task
scheduling take into account communication times and
reconfiguration times when there are not enough free CLBs to
allocate a new task in the reconfigurable unit.

5. EXPERIMENTAL RESULTS

In this section results of the genetic algorithm for HW/ SW
partitioning are compared to those given by the greedy
algorithm. Our partitioning algorithms (GA and Greedy) are
implemented in C++ on an Ultra Sparc 5 Unix workstation.

The benchmark used to evaluate the result quality of our
partitioning agorithm is the AC-3 decoder application. It
includes functions such as Inverse Discrete Cosine Transform
(IDCT), Bit Allocation (BA), Decoupling (DC).A simplified task
graph of this application is presented in fig. 5.

5*256bils 4*2560its
A
. srasag ts(ii)zﬂzmh“i
18%236 it @ Clenter
5 Channels Sr236bite L asebite 256bits 18%256bits
gras6nitd
its 18*255bits
13%256bits oo
5*236bils 4¥2560its
8+ 256bits

18*256bits,

v @ﬂh‘ mﬁm Right
. e
Coupling (;‘"Zlﬁhns @
Exp BA DM DC RX IDCT

Fig. 5: A simplified AC-3 decoder task graph

The deadline given in the AC-3 norm is 5.33 ms. A SW only
implementation on a simple DSP processor leads to an execution
time of 5.57 ms. So we need to accelerate some portions of the
application on HW to fit the deadline constraint. We don't target
a specific commercial FPGA component, so we consider its
attributes as parameters of the whole architecture: the FPGA
total size (in terms of number of CLBs), the reconfiguration time
per CLB, the buses speed and width and the memory access time.
We fix the buses speed and width (bus 1 between the processor
and the interface; A, = 128, 1, = 10 ns; bus 2 between the FPGA
and the interface: A, = 256, 7> = 15 ns) and the memory access

time Q =2ns.

GA is executed with an initial population size N,.q, of 600 and
an offspring size Ngiigren OF 200. The GA terminates when Nge, =
100 generations have passed without improvements of the best
solution. Towards the end of the run, a convergence is observed
as displayed in Figure 6. This figure shows the evolution of the
best individua's cost and the mean cost over severa
generations. The CPU run time on the Ultra 5 workstation of the
GA on the AC-3 application isin the range of 4 to 6 minutes and
0.03 sfor the greedy agorithm.

900m- — - - -~ =
== Mean wvariation

= Best variaticn

g
@
2
a

Execution time(psg)

500 m 1 " 1 . -
=] 100 200 300
Number of generations

Fig. 6: Best individual’s cost and the mean cost values

Given a reconfiguration time per CLB of 0.2 ps (ATMEL
AT6K), we evauate the influence of the FPGA total size on the
entire execution time of the application for the GA and the
greedy agorithms.

1000 .

- Greedy Algorithm
- - Total Re configuration (AG)
0ol " - Partial Reconfiguration (AG) |

00—

00— .“ ! RE— N e i

Execution Time (.5)

00

s00f 4

500 1000 2500 3000

500 500
FPGA size (CLBs)

Fig. 7: Impact of FPGA size on execution time

Figure 7 shows that the increase in the size of the reconfigurable
unit is useless since it does not provide any more speed up due to
the too large reconfiguration time penalties (obviously for the
total reconfiguration curve). The upper limits are 1600 CLBs for
GA and 1800 CLBs for the greedy a gorithm. Except the point of
1400 CLBs, the genetic algorithm is able to do better exploitation
of the number of available CLBs giving lower execution times
than the greedy algorithm. This figure illustrates also that the
two algorithms cannot handle efficiently some sizes of the FPGA
(in the range 600-800 for the GA and the greedy algorithm). The
behaviour of the greedy algorithm and the clustering/scheduling
algorithm in GA consists in exploiting the available CLBs in the
FPGA to paralelize and to speed up executions of tasks.
However, the allocation of a new task to a HW context leads to
delay the executions of the other tasks already alocated in that
context since the reconfiguration time of the context is
augmented. This effect is not really handled in the algorithms as
itisillustrated in fig.7: considering atotal reconfiguration of the
FPGA, we notice that the gap between the two curves given by
the GA is not too large mainly for small FPGA sizes. Note that
the results in fig.7 are obtained for a fixed granularity of CLBs.
Considering an FPGA with a different granularity requires new
estimations and partitioning.

1200
1000 \
wul

me ys)
/

i

Generation Mo 100 160

Fig. 8: The mean cost, Com. mean time and PE’'smean ldle
timevalues

As communications play an increasing role in today's SOC
components, it is also interesting to see the variation of the mean
communication time over several generations. Figure 8 shows
that, after a short decrease, the mean communication time
increases as the overall execution time is dropped. That means
that the refinement procedure of the GA tries to exploit at best
the available parallelism between the Processing Elements (PEs)
leading to extra communication times that remain ‘reasonable’
comparing with the overall execution time. Figure 8 shows also
the variation of the mean PE’s Idle time which is the mean over
the individuals of a given generation of the Idle times on the two
PEs (the FPGA and the processor). This mean time decreases
drastically as the GA proceeds, which is aso due to the
refinement procedure capability to use at best the available gaps
in the timing charts of the two PEs.

6. CONCLUSION

The iterative partitioning process of the greedy algorithm
optimizes locally the allocation and the scheduling of the tasks
on the units of the architecture. No backtracking is introduced in
this algorithm avoiding to consider different alocation of tasks.
The scheduling/clustering process in the fitness evaluation step
of the genetic algorithm is also a greedy agorithm. These two
algorithms must be tuned to take into account the delay
introduced in the executions of tasks in a context due to the
allocation of a new tasks in that context.In the genetic algorithm
allocation and scheduling are separated: alocation isincluded in
the design space exploration while scheduling alows the
evaluation of each solution. The genetic approach for HW/SW
partitioning with a dynamically reconfigurable unit is really
effective compared with a scheduling-based greedy a gorithm.
The genetic partitioning approach provides an efficient
assistance to the designer in the investigation of a balanced
architecture. It alows various parameters of the architecture to
be optimized, such as the number of available CLBs in the
reconfiguration unit, the reconfiguration time per CLB, the data
transfer rates on the buses, the relative speeds of the processor
and the reconfiguration unit.

7. REFERENCES

[1] O. Brosch, J. Hesser, “ATLANTIS — A Hybrid FPGA/RISC Based
Reconfigurable System”, Reconfigurable Architectures Workshop,
Cancun; Mexico May 2000.

[2] Excalibur backgrounder, Altera Corporation, June 2000.

[3] P. Six, “Designing Reconfigurable Networked Appliances using
C++", Vendor presentation at DAC 2001, june 18-20, Las Vegas.

[4] C. Ebeling, D. Cronquist and P. Franklin, “Configurable Computing:
The Catalyst for High-Performance Architectures’, Proceedings of |EEE
International Conference on Application-specific Systems, Architectures
and Processors, pp. 364-72, July 1997.

[5] H. Singh, M. H. Lee, G. Lu, F. J. Kurdahi, N. Bagherzadeh and E. M.
C. Filho, “MorphoSys : An Integrated Reconfigurable System for Data-
Parallel Computation-Intensive Applications’. University of California,
Irvine, CA 1999.

[6] B.P. Dave, G. Lakshminarayana, N. Jha, “COSYN:
hardware/software co-synthesis of embedded systems’, Design
Automation Conference, Anaheim, 1997.

[7] S. Bilavarn, G. Gogniat, J. L. Philippe. “Area Time Power Estimation
for FPGA Based Designs at a Behavioral Level”, ICECS Beyrouth,
December 2000, Kadlik, Lebanon.

[8] B.Jorgensen, P.Madsen “Critical path driven heterogeneous target
architectures’, 5th Workshop Codes/ CASHE' 97 ,15-19, Braunschweig,
March 1997.

