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ABSTRACT

In this communication, we present an original unsuper-
vised image segmentation procedure which assumes the
2-D objects to be fractal. This technique 1s applied to
the evaluation of the covering rate of algae deposit in
the ’green tide’ phenomenon which occurs on the coasts
of Brittany. After a discussion relative to the fractal na-
ture of the objects under study, we introduce a fractal
growth model called DLA which, in conjunction with
the image data, allows the obtention of a binarized im-
age. For this, a Bayesian formulation is adopted. Some
experimental results are presented, which show the po-
tentiality of this approach.

1 Introduction

The so-called ’green tide’ phenomenon is characterized
by the proliferation of green algae (ulvea) within bays
with typical closed topology, which are numerous around
the Breton coasts. Under certain conditions of sea cur-
rent and swell, this phenomenon provoques the deposit
upon the beach of an equivalent mass of several hun-
dred tons of this kind of algae. The on-site measure of
this biomass as an indicator of the nitrate pollution in
ground basins is made difficult because the sampling of
such surfaces (which may attain 10 km?) can only be
parcimonious, and also because heavy means are neces-
sary.

Aerial imagery can then be of great help for this pur-
pose, because it offers the possibility of acquiring in a
single image the whole site under study. However, aerial
images do not allow the access to details (which are of-
ten very fine) of the deposit under the ground resolution
of the sensor (typically 1 m?). Figure 1 shows an exam-
ple of such an aerial image.

In this study, we started from the fact that aerial im-
ages of the algae deposit are very similar to other im-
ages issued from some particular physical process (Diffu-
sion Limited Aggregation - DLA, Dielectric Breakdown
Model - DBM) [7] [1]. After several in situ analysis
which seem to corroborate this fact, we thus conjec-
tured the fractal nature of the algae deposit [2], which
is thus seen as an objet with a mass dimension less than
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Figure 1: Aerial image of green algae phenomenon (Bay
of Lannion — France).

2. More precisely, the object that we qualify as frac-
tal is not the algae deposit itself, but the set of channels
and micro-channels through which flows the residual sea
water, after the deposit of a homogeneous mass of wet
algae.

In Figures 2 and 3, we present an example image of a
close area with typical deposit, together with a blind bi-
narization (without any prior information), which gives
to the reader an idea of the (supposed fractal) object
from which the mass dimension should be estimated.
Let us recall here that, for an object with a mass fractal
dimension A (1 < A < 2), the mass M (r) within a disc
of radius r varies as follows [5] :

M(r) « 2 (1)



Figure 2: Close view of a fractal algae deposit (128 x
128).

2 In situ measurements

In order to assess the fractal nature of the deposit, we
performed several in situ measurements relative to the
local covering rate of the green algae which is homo-
geneous with the mass of our (supposed) fractal object.
Finding an experimental methodology for measuring the
mass fractal dimension of such an object is quite diffi-
cult, because :

e The surfaces under study show long distance related
phenomena, as much as 15 up to 25 meters.

o The micro-local (in a range of a few centimeters) al-
gae deposit is subject to a high variability in the decision
about the absence or the presence of green algae. Note
here that the green algae is made of thin foils of size
about 20 centimeter?.

The mass of the object under study being homogeneous
to a surface and more precisely the complementary of
the algae deposit surface, one methodology for in situ
measurements could be to count and sum the local sur-
face deposit at a sufficient low scale : this technique
clearly relates to the so-called ’mass radius’ method.
However, this approach would be very time-consuming
and should be avoided.

Another way of estimating the mass fractal dimension
A'is the cumulative intersection method [3] [4]. Tt simply
consists in choosing at random a central point within the
fractal object and counting, for regularly spaced radii
r(7),0 < i < N, the following quantity :

N—1
CI() =Y I(r(i) , (2)
i=0
where N is the number of circles around the central
point and I(r(7)) is the number of intersections between
the object and its background support. Then it is shown
that A can be estimated as the slope of In(CI(7)) as a

function of In(r(7)).
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Figure 4: Mass fractal dimension estimation.

In practice, cumulative intersections were measured in
situ (with circle radii spaced of 1 m, and rmax = 20
m) during two campaigns in summer 1997 and summer
1998, and a rough estimate of A = 1.72 was obtained
(see Figure 4 for a log-log plot of 11 curves). Thus it
appears that the object under study has a mass fractal
dimension less than 2, which corroborates the fractal
hypothesis. Also, it can be highlighted that this partic-
ular value of 1.72 is very close to the theoretical value
of the fractal dimension of the DLA process, which is
Apra = 1.71.

3 Model-based binarization of a fractal object

3.1 Context and theoretical background

Now that we have assessed the fractal nature of the sea
water channels and micro-channels — at least within a
certain range —, the question arises about the obtention
of a robust binarization of such an object with respect to
its background, provided the available data is an aerial
image of the algae deposit. In this application, despite
the fact that color images were available, we have chosen



to work with gray scale images for the sake of simplicity.
The main idea of this work relies on a Bayesian frame-
work for a particular DLA process over the square lat-
tice. DLLAs have been studied for a least two decades by
statisticians and physicists and many theoretical results
are available in the literature, with applications in fluid
mechanics and dendritic growth [7].

Concerning the simulation of DLA processes, two main
approaches exist, namely the random walk on the lattice
(also known as the ’drunk ant’ approach) [8], and the
approach based on solving the Laplace equation [1].
However, both approach seem to be rarely used in an
anisotropic context as is the case herein. As a matter of
fact, the displacement of the residual sea water during
the algae deposit may be locally considered as unidirec-
tional, from the top to the bottom of the beach.

In this work, we finally chose to use the Laplace equa-
tion approach, while imposing a particular topology to
the problem. The aim of our binarization technique will
then be to perform an aggregation of ’particles’” which
takes into account the probability of aggregation of such
a particle to the aggregate (say the fractal object), con-
ditioned to the given image data.

3.2 The proposed technique

Strongly related to the DLA process is the Laplacian
growth model. More precisely, considering that the
whole aggregate is set at a 'potential’ P = 0, and the
external boundary is set at P = 1, this model assumes
that the probability of aggregation of a new particle is
proportional to the local potential P, which follows the
Laplace equation [1] :

VP?=0 (3)

Upon the square lattice, the preceding equation be-
comes :

P(s) = %ZP(3+7€) , )

where the sum holds over the M nearest neighbouring
sites s + ¢t. In our experiments, we chose M = 8. Thus
a direct access to the probability of aggregation of a
new particle to the aggregate is available at each step
through a simple filtering of a potential map P(s).

3.3 Description of the algorithm

We now describe the algorithm used for the binarization
of the fractal structure.

The basic idea is to adopt a Bayesian framework that
jointly takes into account the DL A model and the fitting
to the image data. More precisely, if we call D the
DLA aggregate and y(s) the gray level at site s, then
the probability of aggregation conditioned to the image
data follows :

P(s € DY (s)) f(Y(s)) = F(Y(s)ls € D) P(s € D)(5)

where f(Y(s)) is the probability density function of the
random variable Y (s). Thus we can write :

P(s € DIY () = o)  F(Y (5) = wols € D) P(s € D)

(6)
Concerning the fitting to image data, one has to impose
a ’‘reasonable’ model for f(Y(s) = yols € D). In this
work, we chose the following one :

f(Y(s) = yols € D) < exp(—B(ymax — %))  (7)

Note that other models can probably be adopted, but
this question remains beyond the scope of this study.
On the other hand, the probability P(s € D) is explic-
itly given by Eq. (4), provided we restrict the site s to
the external limit Dt of the DLA. However, the com-
putation of local potentials requires an updating after
each aggregation of a new pixel to the current DLA.
This updating can be performed in an iterative manner
by applying an isotropic filtering of the potential map
P with the following 2-D filter :

o1
h=g| 10 1], (8)
111

until convergence of the resulting map.

Once the new potential map is available, one computes
the probability distribution of aggregation at the bor-
der of the DLA using Eq. (6). Finally, one performs
a random trial according to this distribution and then
aggregates the corresponding pixel to the DLA.

To summarize, we give below the general scheme of our
technique :

1. Imitialization : Definition of potential limits P = 0
on the DLA and P = 1 on the external (far) border.
Note that in our experiments, the DL A was chosen
to grow from the bottom of the image to the top,
and that the only available information for starting
the aggregation was the image data.

2. Laplace equation : The potential map between the
DLA and the external border is computed itera-
tively as explained above. Without detailing the
procedure, image border effects have been taken
into account in this step.

3. Probability computation : ¥s € Dt compute the
distribution P(s € D|Y(s) = yo) according to Eq.

(6)-

4. Random trial : choose at random a site s* following
this distribution.

5. Aggregation : let D < DU s*

6. Return to step 2.



Figure 5: Corresponding potential map.

4 Experimental Results

We now present a sample result of this procedure to
the image given in Figure 2. Firstly, an intermediate
result of aggregation is presented together with the cor-
responding current potential map P(s) in Figure 5. On
the former, one can see that privileged channels are cor-
rectly — while partially — binarized, and that the main
branching of the DLA is easily tracked. On the latter,
one can see the potential distribution map, which in-
deed resembles the magnitude of an electric potential
field. This also explains why the DLA model is closely
related to the Dielectric Breakdown Model (DBM). Note
that this results corresponds to an aggregation of 1000
pixels.

Figure 6 presents the final binarization of the image,
that can be compared to Figure 3. Here the fractal
growth required the aggregation of 3000 pixels. One
can remark the quality of the binarization in comparison
with the blind one, although some branched structures
at the bottom of the image are missing.

5 Conclusion

In this communication, we have presented an original
segmentation (binarization) procedure which takes into
account the fractal nature of the objects under study.
This techniques associates to the image data an a prior:
model of structure growth, called DLA, which helps the
segmentation process. This model and the given image
data are combined within a Bayesian framework. While
the results presented are quite preliminary, we hope that
a refinement of the aggregation model and a better mod-
eling of the underlying physics with the image data can
produce even better results. To finish with, let us point
out that the approach presented herein has many sim-
ilarities with a technique developed in 3-D medical im-
agery [6] for the retrieval of arterial structures.

Figure 6: Final binarization.
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