
DCT Computation Using Real-Valued DFT Algorithms

Ryszard Stasiński
Dept. of Electronics and Telecommunications

Poznań University of Technology
Poznań, Poland

ABSTRACT
In the paper it has been shown that when data vector size is
odd, then the discrete cosine transform (DCT) can be
computed by a real-valued DFT algorithm for appropriately
permuted data samples. The same is true for the DST.
Moreover, for composite transform sizes prime factor DCT
algorithms can be constructed consisting of odd size real-
valued DFT algorithms and DCT/DST algorithms which sizes
are equal to a power of number 2. Similarly as for the DFT,
the algorithms can be nested. It has been proven that the new
DCT/DST algorithms require the smallest known numbers of
arithmetical operations.

1. Introduction
The discrete cosine transform (DCT) is one of the most
important tools of digital signal processing. It is widely used in
image processing, especially in image coding, speech analysis
and coding, implementation of filter banks etc. Since its
formulation it has been known that the DCT can be computed
efficiently through a DFT, and not all ‘custom’ DCT
algorithms have been better in this respect. The first algorithm
for DCT sizes being a power of number 2 requiring the
smallest number of arithmetical operations has been described
in [1]. Optimality of the algorithm can be deduced from the
provided in the paper construction showing how basing on this
algorithm the split-radix FFT can be derived. The new
applications of the DCT prompted interest in DCT algorithms
for any data vector sizes. Probably the most complete set of fast
DCT algorithms can be found in [2], however, algorithms
presented there have complex descriptions, hence, they are
difficult to evaluate and implement.
The derived in this paper DCT and DST algorithms are based
on the prime factor FFT algorithm (PFA FFT), which greatly
simplifies their description and evaluation. The idea of
derivation has been suggested in [3]. In section 2 it is shown
that DCTs and DSTs for data vector sizes being odd numbers
can be computed by DFT algorithms for real-valued data of the
same size. Then, in section 3 the result is generalized to the
case when data vector sizes are q2s, q is odd, then DCTs can be
computed by prime factor algorithms consisting of q-point real-
valued FFTs and 2s-point DCT/DST algorithms. In section 4 it
is outlined how nesting (i.e. WFTA-like) and common factor
DCT/DST algorithms can be constructed. Finally, in section 5
it is proven that the new algorithms require the smallest known
numbers of arithmetical operations.

2. Derivation
Let us start with definitions of the transforms considered in the
paper. The not-normalized version of the N-point DCT (DCT-
II in [4]) for data samples x(n) can be defined as follows:

 []∑
−

=

+⋅=⋅=
1

0
2
1)(cos)()()()()(

N

n
NC knnxkckXkckX π (1)

=
 1
21)(kc

,1,...,1,0for
 ,0for
−=

=
Nk

k

where X(k) samples are computed by algorithms presented in
the paper. The DST (DST-II in [4]) is defined in a similar way,
except cosine function is replaced by the sine one, k=1,2,...,N,
and c(k) is not equal to 1 for k=N. The DFT is defined as usual:

 ,2exp,)()(
1

0
∑

−

=

=⋅=

N

n
N

kn
NF N

WWnxkX π

k=0,1,...N-1. Because of Hermitian symmetry real-valued DFT
algorithms compute samples for 20 Nk ≤≤ only, which
gives twofold reduction of memory requirements and even
more than twofold reduction of computational burden [5].
The N-point DCT for data)(nx can be computed by a DFT
algorithm of size 4N for input vector formed as follows:

).()124(

),()12(
;1,...,1,0,0)2()22(

nxnNx
nxnx

NnnxnNx

F

F

FF

=−−
=+

−===+
 (2)

Namely, DFT for symmetric data transforms into DCT-I [4],
and by setting to zero even input DFT samples we get
appropriate subsampling of the transform kernel:

.1,...,1,0),(2)(cos)(2

4
2)12(cos)12()(

1

0
2
1

22

0

−=⋅=

 +=

=

 ++=

∑

∑
−

=

−

=

NkkX
N

knnx

N
knnxkX

N

n

N

n
FF

π

π

Then, for obtaining correct DCT samples it suffices to
normalize samples)(kX F (1), [4].

Let us assume that N is odd, and that the 4N-point DFT
algorithm is the 4×N PFA FFT [6]. The most widely used input
data permutation pattern for this algorithm is:
),4'()"(⋅+⋅← nNnxnx FF (3)

n’=0,1,2,3, n”=0,1,...,4N-1, index computations are done
modulo N. The structure of the algorithm is shown in Fig.1.
Value 4' ⋅+⋅ nNn is odd only for n’ odd, hence, N-point DFTs
for n’ even in Fig.1 have zero inputs and are obsolete (2). Input
sample indices to N-point DFTs for n’=1,3 are: N, N+4,
N+8,... and 3N, 3N+4, 3N+8,... respectively. If we revert order
of input samples for n’=3, then we have 3N, 3N-4, 3N-8, ...
Notice that
),4()]4(4[)43(⋅+=⋅+−=⋅− nNxnNNxnNx FFF

indices are taken modulo 4N. This means that the input to N-
point transform for n’=3 is identical but reverted with respect
to that for n’=1, hence, N-point DFT samples for n’=3 form
complex conjugate pairs with those for n’=1. Concluding,
computation of the N-point DFT for n’=3 is obsolete, too.
It is shown in Fig.2 what are simplifications in the stage of 4-
point DFTs resulting from these symmetries, XN(k), X4(k’) are
samples of the N-point DFT for n’=1, and the 4-point DFT for
some k, respectively, k’=0,1,2,3, k”=0,1,...N-1. As can be
seen, indeed, computation of N-point DCT can be done by N-
point DFT algorithm for appropriately permuted data samples,
moreover, real-valued version of DFT algorithm suffices. The
permutation pattern is (2), (3):

.4)13(],2)13(2[)(

,4)13(4)1(],212)13([)(
,4)1(0],2)1(2[)(

NnNNnxnx
NnNnNxnx

NnNnxnx

<<−+−←
−≤<−−−+←

−≤≤−+←

We need know now the relation between the N-point DFT
samples XN(k) and the DCT. In general, index for the 4×N PFA
FFT sample ,14,...,1,0"),"(−= NkkX F can be computed from
indices of 4- and N-point DFTs by the Chinese Remainder
Theorem [6], which means that they are related as follows:
 ,'4mod",mod" kkkNk ==

see Fig.1. For k” indices up to N pairs of (k, k’) indices are:
(0,0), (1,1), (2,2), (3,3), (4,0), (5,1), ..., in general (k, k mod 4).
Fig.2 reveals that X(k) samples (1) can be obtained from the N-
point real-valued DFT, and form the following pattern:

)}..34(Im{)},24(Re{)},14(Im{)},4(Re{.. +−+−+ iXiXiXiX

where ,40 Ni <≤ if 4i+k’>N/2, then take Re{X(N-4i-k’)}=
Re{X(4i+k’)}, or Im{X(N-4i-k’)}=-Im{X(4i+k’)}.
Derivation of the DST algorithms for odd N is analogous, the
main difference is that we are forming an anti-symmetric input
vector to the 4N-point DFT, i.e. (2):
).()124(nxnNxF −=−− (4)

Notice that the imaginary part of the DFT kernel has negative
sign: ,2sin}Im{ MWM π−= and that the range of DST
indices is k=1,2,...,N. A DST algorithm can be also obtained
from a DCT one by appropriate data sign changes, see [1].

3. Generel case
The above derivation forms a good starting point for
constructing DCT algorithms of any size. The size N can be

factorized: ,2 qN s ⋅= where q is an odd number, hence the

vector)"(nxF (2) is processed by the KqqN s =⋅= +224 -
point DFT. We choose the K×q PFA FFT having input data
permutation pattern:
 ;1,...,1,0'),'()"(−=⋅+⋅← KnKnqnxnx FF (5)

index computations are done modulo 4N [6]. Algorithm
structure is as in Fig.1, only the N-point algorithms are
replaced by the q-point ones, size of output DFTs is now K,
and n’,k’=0,1,...,K-1. We can verify that q-point DFTs for even
n’ are obsolete (have all zeros at their inputs), similarly as
those for n’,k’>K/2, as their outputs are complex conjugate to
samples of DFTs number K-k’.
These symmetries imply how the K-point DFTs can be pruned.
From Fig.2 we can see that input K-point DFT samples for
even indices are zero, while the others exhibit Hermitian
symmetry:),'()'(* nxnKx KK =− star denotes complex
conjugate. This pattern is described in equations (2), (4),
hence, instead of K-point DFT computation real part of vector
can be processed by the K/4-point DCT, and imaginary part by
the K/4-point DST.
The details are as follows: K/4-point DCT computes K-point
DFT samples of a symmetrical vector formed as in (2) for
indices k’=0,1,...,K/4-1, hence, real parts of DFT samples, K/4-
point DST computes DFT samples of an anti-symmetrical
vector (4) for k’=1,2,...,K/4, hence, the imaginary DFT part1.
For k=0 samples of the q-point DFTs are real-valued, hence,
there is no K/4-point DST for them. The samples of the K-point
DFT for k’=K/4+1, K/4+2,..., 3K/4 can be obtained by
reverting signs of appropriately chosen remaining ones. Their
indices can be deduced from the derivation of M-point radix-2
decimation-in-time FFT: at its very end DFT components for
even and odd data samples are combined [6]:

),()()2(

,12,...,1,0),()()(
mXmXMmX

MmmXmXmX

oddeven

oddeven

−=+
−=+=

here .,0)(KMmX even == Finally, we can reduce
computation burden by using real-valued q-point DFT
algorithms.
The input permutation pattern to the obtained in this manner
DCT for any N is (2), (5):

otherwise,]2/)1'(212[)(

,24mod)'(],2)1'(2[)(
−⋅−⋅−−←

<⋅+⋅−⋅+⋅←
qnKnNxnx

NNqnKnqnKnxnx

index computations are done modulo N, .12,...,3,1' −= Kn The
formula for output 4N-point DFT permutations comes out from
the Chinese Remainder Theorem [6], hence, the relations
between 4N-, q-, and K-point DFT indices are:
 ,'mod",mod" kKkkqk ==

This means that N-point DCT samples (X(k) in (1)), being
equal to first N samples of the 4N-pont DFT are obtained from
q-point DFTs and K-point DFTs indexed by pairs (k” mod q,
k” mod K), which is analogous to the result from the previous
section.

1 Discrepancy between kernel signs of DST, and imaginary part
of DFT induces careful data sign considerations here.

4. Other possibilities
What we have just derived is the DCT algorithm analogous to
the PFA FFT. Similarly as for the DFT, we can use it as a basis
for construction of WFTA-like DCT algorithm. We start with
splitting computations inside q-point DFTs into those for real
and imaginary part of the transform. This can be done by
forming input data symmetric and anti-symmetric vectors,
processed then by DCT I, and DST I algorithms [1, 4]. If
derived carefully, this computation scheme requires the same
amount of arithmetical operations as real-valued DFT
algorithm [5]. Then two two-dimensional-like structures
emerge: DCT I algorithms computing real part of q-point
DFTs, followed by K/4-point DCTs, and DST I algorithms for
imaginary part of these DFTs followed by K/2-point DSTs. We
can now nest these structures [6].
Another possibility is to come back from prime-factor type
algorithm to a common factor one. In [5] it has been shown
that PFA FFT can be obtained from CFA FFT by shifting parts
of input (or output) data in such a way that rotation factors
become equal to 1. We can do a step back here, and shift, or in
general permute input data to q-point DFTs. If chosen
carefully, the operation may simplify input and/or output
permutations of the algorithm, the price is 0(N) more
operations linked with reappearance of rotation factors.

5. Optimality of the algorithms
In [1] it has been shown how to construct one of the best
known DFT algorithm of size 4N for N being a power of
number 2 from an N-point DCT one. This has meant that the
derived in that paper DCT algorithm has been the best known
one, too. Namely, if it has existed a DCT algorithm requiring
less arithmetical operations, then by the same construction we
would be able to derive a DFT algorithm better than the split-
radix FFT from [1].
We will use the construction from [1] for proving optimality of
the DCT algorithms derived in this paper. Firstly, a DCT
algorithm can be transformed into a DST one, and vice versa,
by some data sign changes, hence, we need not a DST
algorithm when we have a DCT one. When constructing the
4N-point DFT algorithm from an N-point DCT one, a pair of
DCT and DST algorithms process symmetric and anti-
symmetric data vectors of size N formed from data samples for
odd indices, their generation is done by 2N
additions/subtractions. Data for even indices are transformed
by a 2N-point DFT, and then results combined with those from
DCT/DST by using 4N additions/subtractions. For odd N the
2N-point DFT can be computed by the 2×N PFA FFT, in
which the 2-point DFTs require 2N additions/subtractions.
Summarizing, for odd N we need arithmetical operations of 4
DFT algorithms of size N (two of them do DCT/DST
computation1), plus 8N auxiliary additions/subtractions. On the
other hand, 4N-point DFT for odd N can be computed by 4×N
PFA FFT containing 4 DFT algorithms of size N, and N DFT
algorithms of size 4, the latter requiring in total 8N
additions/subtractions, too. If it exists a better DCT algorithm

1 For complex data symmetric and anti-symmetric DFT parts
are added/subtracted, but this is compensated by operation
savings in real-valued FFTs.

than that described in the paper, then we are obtaining a better
DFT algorithm than the 4×N PFA FFT, which is unlikely.
In general, inside the 4N-point DFT algorithm constructed
from the N-point DCT one we have 4N/q DFTs of size q,
2q=8N/K DCT/DST transforms of size K/4 (inside two N-point
DCT algorithms), and 4N/K DFTs of size K/2, if the 2N-point
DFT for even data samples is computed as the K/2×q PFA
FFT, plus 6N auxiliary additions/subtractions. If we compute
the 4N-point DFT as the K×q PFA FFT, then we have 4N/q
DFTs of size q, and q DFTs of size K, where each of the latter
transforms, if computed in accordance with [1], contains 2
DCTs of size K/4, one DFT of size K/2, and 3K/2 auxiliary
additions/subtractions. We can verify that total counts of
transforms/operations are the same for both algorithms. It can
be shown that optimized DFT modules for K=8,16 [6] are
constructed in accordance with [1], hence, the conclusion is
true also for 4N-point WFTA and DFT algorithm constructed
from the N-point WFTA-like DCT algorithm.

6. Conclusion
It has been shown in the paper that the discrete cosine and sine
transforms (DCT and DST) can be computed by slightly
modified DFT algorithms for real-valued data of the same size.
When transform size is odd, the modification consist only in
changed input/output data permutations. In general, when the
transform size is q2s, q being odd, in addition to it 2s-point
DFT algorithms in the PFA FFT structure should be replaced
by those for DCTs and DSTs. The PFA FFT-like DCT/DST
algorithm can be then transformed into the WFTA-like, or CFA
FFT-like one, hence, it appears that for any important DFT
algorithm its DCT/DST counterpart can be derived. Finally, it
has been shown that the new DCT/DST algorithms require the
smallest known numbers of arithmetical operations.

References
[1] Vetterli M., and Nussbaumer. H.J. “Simple FFT and DCT

algorithms with reduced number of operations”. Signal
Processing, Vol. 6, 1984, pp. 267-278.

[2] Bi G., and Yu L.W. “DCT algorithms for composite
sequence length”. IEEE Trans. Signal Processing, Vol.
46, 1998, pp. 554-562.

[3] Stasinski R. “Optimal DCT algorithms for any data block
size”. Nordic Signal Processing Conference (NORSIG-
96), Tampere, Finland, 1996.

[4] Wang Z. “Fast algorithms for the discrete W transform
and for the discrete Fourier transform”. IEEE Trans.
Acoust., Speech, Signal Proces., Vol. 32, 1984, pp. 803-
816.

[5] Stasinski R. “The techniques of the generalized fast
Fourier transform algorithm”. IEEE Trans.Signal
Processing, Vol. 39, 1991, pp. 1058-1069.

[6] Blahut R.E. Fast algorithms for digital signal processing.
Addison-Wesley, Reading MA, 1985.

Fig. 1.: Structure of the 4×N PFA FFT, N is odd, for explanations see text.

Fig.2: Example of output 4-point DFT algorithm of the 4×N PFA FFT, and how it processes data when N-point DCT is computed.

..

.. ..

..

..

..

...

N-point
DFT,

n’,k’=0

N-point
DFT,

n’,k’=1

N-point
DFT,

n’,k’=2

N-point
DFT,

n’,k’=3

4-point
DFT,
n,k=0

..

...

..

...

..

...

..

...
..
...

..

...

..

...

..

...

xF(4n)
n’=0

xF(4n+N)
n’=1

xF(4n+2N)
n’=2

xF(4n+3N)
n’=3

XF(k”)
k”mod N = k
k”mod 4 = 0

XF(k”)
k”mod N = k
k”mod 4 = 1

XF(k”)
k”mod N = k
k”mod 4 = 2

XF(k”)
k”mod N = k
k”mod 4 = 3

-1

-1

0

0

XN(k)

XN
*(k)

0

0

2Re{XN(k)}

2jIm{XN(k)}

-1

-1-j

X4(0) =
 2Re{XN(k)}

X4(2) =
 -2Re{XN(k)}

X4(1) =
 2Im{XN(k)}

X4(3) =
 -2Im{XN(k)}

