
ACOUSTIC ECHO CANCELLATION IN THE PRESENCE OF
DISTORTING LOUDSPEAKERS
 Aurelio Uncini, Andrea Nalin and Raffaele Parisi

INFOCOM Dept. - University of Rome “La Sapienza”
Via Eudossiana 18, 00184 Rome – Italy

email: aurel@ieee.org

ABSTRACT

Acoustic echo cancellation is usually needed in
hands-free telephone systems or in video conference
applications. Conventional acoustic echo cancellers
(AECs) basically rely on the assumption of a linear
echo path. Their performance is then limited in the
presence of nonlinearities, like those typically
generated in low-quality loudspeakers.

The presence of nonlinearities require the
adoption of nonlinear AECs. Truncated Volterra
filters are usually applied to nonlinear echo
cancellation, but the improvements obtained with
respect to linear adaptive filters do not justify a
computational  load of at least 2( )O N  (like in the
case of second-order Volterra filters) and simpler
approaches are necessary.

In this paper the effect of loudspeaker
nonlinearities is first investigated. Then a
convenient new nonlinear architecture based on
spline adaptive functions with computational cost of

( )O N is proposed as an effective alternative to
computationally more expensive approaches.

1. INTRODUCTION

The problem of acoustic echo arises when a
loudspeaker and a microphone operate in the same
environment, such that the microphone picks up the
signal radiated by the loudspeaker and its reflections on
the borders of the enclosure.

Figure 1 shows the architecture of a typical acoustic
echo canceller (AEC), which is based on an adaptive
filter placed in parallel to the loudspeaker-enclosure-
microphone system (LEM). The adaptive filter should
match the impulse response of the LEM system in
order to cancel out its effect from the transmitted
signal. Typically, linear filters are employed.

However, the presence of nonlinearities in the LEM
system can make the performance of linear filtering
schemes  inadequate [5]. A typical case is the presence
of low-quality loudspeakers, that can introduce serious
distortions in the acquired signal [5][7]. In these
situations, nonlinear AECs constitute an attractive
alternative to more conventional architectures [6]. At
the same time they may require a higher computational

cost that make them ineffective in practical
applications.

Due to their local adaptation characteristics, splines
demonstrated particularly effective in the design of
non-linear adaptive systems [1][8][9]]-[[11]. In
particular, adaptive splines are able to guarantee the
flexibility and generalization capabilities required, with
a reduced computational overhead. For these reasons,
they appear particularly suited for the design of
nonlinear AECs.

The paper is organized as follows. In section 2 the
reduction of performance of conventional linear
algorithms in the presence of loudspeaker
nonlinearities is illustrated with the use of real signals.
In section 3 the proposed spline-based nonlinear filter
is presented and in section 4 its  computational
complexity discussed. Finally, in section 5
experimental results are shown, in which the proposed
structure is compared both to linear normalized LMS
(NLMS) filter and to second-order Volterra non linear
filter [2][3].

Fig 1. Architecture of a typical echo canceller

2. LOUDSPEAKER EFFECT ON THE
PERFORMANCE OF LINEAR AECs

An index generally used to evaluate the performance
of echo cancellers is the echo return loss enhancement
(ERLE), which is expressed by:

2

10 2

{ [ ]}
10log

{ [ ]}
E d n

ERLE
E e n

 
=  

 
, (1)

where notation of fig. 1 has been used.
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In order to illustrate the reduction in the achievable
ERLE of linear AECs due to the presence of
nonlinearities, we have compared the experimental
results of echo cancellation in a typical teleconference
setup, using two different loudspeakers:  a professional
HI-FI loudspeaker and a common low-cost loudspeaker
(like those used for PC workstations). Figure 2 shows
the difference between the two speakers, in terms of
introduced distorsions, for a 80 Hz sine.

The linear NLMS algorithm is the most
commercially used optimization method in echo
cancellation and is the baseline by which performance
of alternative models is measured. Experimental results
in two different cases are shown in fig. 3, referring
respectively to white gaussian noise and male human
voice. It is clear the difficulty of the linear approach
(NLMS) in cancelling distorsions introduced by the
inexpensive speaker.

Fig. 2 80 Hz sine acquired using a professional loudspeaker
(left) and a low-cost one (right)

Fig. 3 Measured ERLE for a white gaussian noise and a male
voice

3. SPLINE-BASED NON LINEAR ECHO
CANCELLER

The architecture that we propose is composed by a FIR
filter with a nonlinear function at its output. This
structure can be viewed as a neural network with a
single neuron. In order to increase the learning
capabilities of this neuron, we  consider an adaptive
activation function, i.e. a function whose shape can be
opportunely modified during the signal processing. In
particular it has been showed [8][11] that adaptive
spline activation functions are characterized by good
generalization capabilities and learning speed. In
addition, adaptive splines yield a reduction of the
number of free parameters, still mantaining its adaptive
capabilities.

The proposed nonlinearity is based on a LUT (Look
Up Table), whose control points are adapted in order to
optimize a specified cost function. The output is
obtained by a proper interpolation scheme. More
specifically, the type of  interpolation adopted must
guarantee a continuous first derivative in order to allow
a gradient-based learning algorithm.

In order to take into account these requirements, the
piece-wise polynomial spline interpolation scheme has
been chosen [11]. In the following, we briefly recall the
main features of adaptive splines and furnish a
description of the learning strategy.

3.1 Adaptive splines

Let h(x) be a general nonlinear function. Spline
approximation consists in subdividing h(x) in multiple
tracts (spans), each one being locally approximated by a
spline curve:

( ) ( ),y h x h u i= = (2)

Spline approximation requires a number of control
points qi and a local variable [0,1)u ∈ for each span. In
general, N+1 control points ( ,0 ,1 ,...x x x Nq q q< < < ) are

considered, spaced by a uniform step size ∆x. The
output of the activation function is then obtained
through sequential application of the following
equations:
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where i is the index of the curve span of the function
needed for the computation of the output, ( )jC u  are

the spline basis functions and ( )yiF u  is the output.
Figure 4 shows two kinds of cubic splines (i.e.

controlled by four control points), namely the Catmul-
Rom and the B-spline, corresponding to two different
interpolation schemes [11]. The B-spline will be used
in the following.

Fig. 4  Cubic-Spline interpolation of control points.

3.2 Learning algorithm

We have developed an LMS-type adaptation process.
Considering  the squared value of the istantaneous
error [ ]e n  as a cost function, the filter coefficients are
updated by the following formula:
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Concerning the adaptation of the control points, we
have:

, ,
,

[ ]
[ 1] [ ] [ ]

[ ]y i j y i j q
y i j

e n
q n q n e n

q n
µ+ +

+

∂
+ = −

∂
, 0 3j≤ ≤

(10)

where
3

,
0, , ,

( )[ ]
[ ] ( ) ( )

[ ] [ ] [ ]
yi

y i k k j
ky i j y i j y i j

F ue n
q n C u C u

q n q n q n +
=+ + +

∂∂ ∂  = − = − = − ∂ ∂ ∂  
∑

0 3j≤ ≤

Referring to [4], we also introduce the following
normalization of the learning step-size of the
coefficients:
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This choice for µ allows to obtain for the non linear
case the same improvements that NLMS yields with
respect to the LMS algorithm in a linear framework.

4. COMPUTATIONAL COMPLEXITY

An interesting feature of the proposed approach is its
computational cost in terms of MOPS (multiplications
per sample). In fact, its order is ( )O N  and it is then
comparable with that of the linear NLMS filter.

The computational overhead required to compute the
output of the adaptive non linear function and to adapt
the control points is a fixed cost, which can be easily
computed from equations (2) to (11) and depends on
the chosen spline basis functions. In the case of the
cubic B-Spline used in our simulations, this fixed cost
has been estimated to be of 30 multiplications. As a
consequence, the total number of multiplications
required is 3 30N +  MOPS. However, this overhead
with respect to NLMS filtering is substantially
negligible for typical values of N.

5. EXPERIMENTAL RESULTS

The presented system was tested using a white
Gaussian noise as excitation. A commercial
loudspeaker (the same used in section 2) and a
microphone were placed in an enclosure with low
reverberation level, whose acoustic impulse response
had a length estimated in 1024 coefficients. The echo
acquired with the microphone was used for the
simulations.

In fig. 5 it is shown the ERLE measured in the case
of the proposed structure using the cubic B-Spline
basis function, 0.2x∆ =  and step-size values 1µ =%  e

0.05qµ =% . For comparison purposes, the ERLE
obtained with the linear NLMS filter and with non
linear second order truncated Volterra filter [] with

2 10N =  and 2 20N =  are also shown. This experiment
confirmed the better performance of the spline-based
approach.
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Fig.5 Measured ERLE for a white gaussian noise
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