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ABSTRACT

In this paper we will address the problem of constructing a
nonparameteric decision boundary for watermark detection.
Most current watermarking algorithms have a parametric
decision boundary that can be estimated if the pirate has
unlimited access to the detector. In this work we propose a
fractal decision boundary which can not be estimated. That
boundary is obtained by processing the decision boundary
corresponding to the underlying watermarking algorithm. The
performance of the new technique is essentially similar to any
watermarking algorithm from which it is derived.

1. INTRODUCTION

Watermarking has become an essential tool for multimedia
copyright protection. Numerous techniques have been proposed
for watermarking audio and image contents [1]. For copyright
protection purposes, the watermark should remain in the host
media regardless of any reasonable processing that it may
undergo. It may be removed only at the expense of excessive
image or audio distortion.
However, most algorithms have security pitfalls especially if the
detector becomes public and unlimited access to it is possible.
For example, Secure Digital Music Initiative (SDMI)
organization motivated the wide scale deployment of detectors.
Many attacks have been proposed to remove the watermark
from the host media or at least render it undetectable. These
attacks take advantage of the nonempty overlap between the
permissible region for image or audio modification without
noticeable distortion and the decision boundary of the detector.
The larger the overlap region, the easier the successful attack on
the watermarking scheme. Another serious pitfall that is
important for our particular purpose is the use of the same secret
key for watermarking an unlimited number of copies. This
enables the pirate, If she has unlimited access to the detector as a
black box, to take advantage of the mutual information between
watermarked pieces to estimate the watermark or the decision
boundary. This unlimited access is typical in some applications,
e.g. the Digital Versatile Disk (DVD) player which in the future
will have the capability of identifying the existence of the
watermark in the video content to decide whether to play the
video or not. This unlimited access is a real challenge to the next
generation design of the watermarking algorithms.
Most watermarking techniques for copyright protection solve a
binary hypothesis test. They answer a yes/no question about the
existence of the watermark in the host media, and hence the
watermark itself is immaterial and what is important is to be

well structured to optimize the performance of the detector and
increase its robustness. All watermarking algorithms take
advantage of the inherent redundancy in representing the image
or audio to modify the signal values without introducing
noticeable distortion. This modification can take place either in
the time domain (spatial domain for image) or in the transform
domain, e.g. the DFT or the DCT coefficients. In many cases,
especially for copyright protection the detection is based on
thresholding the correlation coefficient between the test signal
and the watermark. This test statistic is optimal if a Gaussian
distribution is assumed for the host signal or the transform
coefficients, which is not always the case. In [2], the authors
proposed a detector scheme based on a Laplacian probability
density functions (pdf) of the DCT coefficients, and they show
its superiority over the Gaussian representation. However, both
approaches result in a hyper plane decision boundary which can
be estimated if sufficient number of watermarked samples are
available.
In [3], the authors described the asymmetric watermarking
technique that is used a test statistic in a quadratic form.
Although the decision boundary is more complicated in this
case, it is still parametric and can be estimated, for example
using the least square techniques with a finite number of
samples.
In this work we propose an alternative detection technique that
has a fractal decision boundary to avoid the mentioned
problems. This boundary is nonparametric and cannot be
estimated with unlimited access to the detector. The robustness
degradation after this detector is minor, and can be tolerated. To
our knowledge the only work that addresses this problem is [9].
In that work, a new structure for the detector that employs a
nonempty transition band between the two hypothesis. For
example for a correlation test statistic, this band is [A, B].
Denote the correlation coefficient by “y”.  If y < A then H0 (no
watermark) is decided, if y > B, then H1 (watermark exists) is
decided, and if y∈[A,B], then the detector choose H1 with
probability p(y), where p(y) is smoothly increasing in y. The
estimation of the boundary is increased by orders of magnitude
but it is still linear in the signal size.
The paper is organized as follows. In section 2, we give a brief
analysis of the pitfalls of the current detectors when the pirate
has unlimited access to the detector. In section 3, we propose our
new idea of employing a nonparametric decision boundary in the
form of fractal curves. We study the possible implementations
and modifications to the test statistic. In addition, we discuss
briefly the fractal generation for our particular purpose. Finally,
in section 4 we give an overview of the results that show that the
distortion is essentially similar to the original detector.



2. PITFALLS IN CURRENT ALGORITHMS

2.1 Introduction
In this section we give brief analysis of the current detector
schemes. These schemes share a common feature that the
decision boundary is parametric, i.e. it can be fully specified by
a finite set of parameters. The parameters estimation is possible
in theory, for example using least square techniques, if sufficient
samples (points on the decision boundary) are available. In this
section we will review the common detector schemes and
describe their security gaps.
We will use the following notations in the remainder of the
paper. U is the original (non-watermarked) signal, W is the
watermark signal, X is the watermarked signal, and R is the test
signal. The individual items will be referenced by lower case
letters and referenced by the discrete index n, where n is a two-
element vector in case of image watermarking, for example
samples of the watermark will be denoted by w[n].
The detector of our problem can be formulated as a binary
hypothesis test,

H1 : X = U+ W
H0 : X = U (1)

The optimal detector depends on the assumed underlying
probability density function (pdf). For the exponential family the
detector becomes a minimum distance detector, and for the
Gaussian distribution it becomes a correlation detector.  In the
following subsections, we will analyze these detectors.

2.2 Correlation Based Detectors
This detector is the most common and it has been proposed as
the optimum detector for the class of additive watermark. The
log-likelihood test statistic is reduced after removing the
common terms to

l(R) = RT.W = (1/N) ∑n r[n].w[n] (2)
And in this case the decision boundary is a hyper-plane in RN

and it requires N distinct points to be completely specified. If
more points are available a least square can be applied to get the
best estimate of the decision boundary.

2.3 Minimum Distance Detector
In [2], the authors proposed a more accurate pdf for the DCT
coefficients that has the form of a generalized exponential
family:
 fx(x) = A . exp(- | βx|c ) (3)
where A and β can be expressed in terms of c and the standard
deviation σ . For example for the Gaussian pdf, c=2, β = 1/2σ2,
and A = (2πσ)-1/2.The resultant test statistic has the general
form:

l(R) =  ∑n β [n] c[n] ( |r[n]|c[n] - | r[n]- w[n] | c[n] ) (4)
This is more complicated than the direct correlator in (2).
However, the boundary can still be completely specified in
terms of {w[n]}. Again least square minimization can be applied
to get the best estimate if sufficient samples are available.

2.4 Asymmetric Detector
Asymmetric detectors were suggested to make the problem of
estimating the secret key for unauthorized parties more difficult.
In [3], four asymmetric techniques were reviewed and an unified
form for the detector is introduced. The general form of the test
statistic is:

l(R) = RT.A.R = ∑n,m an,m r[n].r[m] (5)

The decision boundary in this case will be a two dimensional
elliptic surface. This may be more complicated than the
correlator case but again it can be estimated using a finite
number of samples. However, in this case we will need at least
N2 samples to estimate the boundary rather than N samples. The
estimation problem of this boundary is ill-posed because the data
matrix will have a structure similar to the Vandermonde matrix.
The round-off errors in the computations of this matrix can
produce excessive numerical errors. However, this problem can
be solved either by finding sufficiently large number of points
on the curve so that it can be approximated numerically or to use
orthogonal discrete polynomial such as Chebeshev polynomials
for boundary approximation [6, ch. 22].

2.5 Quantization Based Detector
The same situation occurs when multiple codebooks are used for
zero/one embedding. In this case the decision boundary will
have the shape of spheres with centers at the centroid of each
codebook. Again this shape can be well specified by the centroid
and its diameter, and hence the whole partition of the watermark
space can be identified. Also the schemes that incorporate
even/odd quantization for zero/one embedding can be modeled
as a finite set of hyper planes

2.6 Generalized Attack
In the previous subsections we described the shape of the
decision boundary in RN of the most common watermarking
schemes. All these boundaries can be specified using least
square techniques if sufficient number of points on the boundary
are available. This is typical when the pirate has unlimited
access to the detector device even as a black box. In this case,
she can make slight changes to the watermarked signal until
reaching a point at which the detector is not able to detect the
watermark. At this point, she can go back and forth around the
boundary until identifying a point on it with the required
precision. Generating a large number of these points is sufficient
to estimate the decision boundary in the above cases. However,
the evaluation of the coefficients of a polynomial is in general a
difficult problem from the numerical standpoint, but one cannot
rely on this for the security of the detector. Specifically, the
boundary shape can be equivalently evaluated using methods
described in subsection 2.4.
Once the boundary is specified any watermarked signal can be
projected to the nearest point on the boundary to render the
watermark undetected with the smallest possible distortion. The
illustration of this idea is shown in figure 1.

Figure 1. Illustration of the generalized attack

It should be mentioned that the watermark needs not to be
extracted prior to removal. It can be completely be undetected
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without estimating it. However, for the correlator in (2),
estimating the decision boundary is equivalent to estimating the
embedded watermark.
This problem motivated this work to search for decision
boundaries that cannot be parameterized. In this case even if the
pirate can change individual watermarked signals to make the
watermark undetected, the modification will be random and the
minimum distortion modification cannot be found as before. The
only choice for the attacker is to try to approximate it
numerically and this will require extra cost by several orders of
magnitude.

3. PROPOSED ALGORITHM

3.1 Algorithm
Rather than formulating the test statistic in a functional form, it
will be described by a nonparameterized function. We select
Peano curves to represent this decision boundary. So instead of
the test statistic of the forms (2), (4), and (5) we employ a fractal
test statistic whose argument is R and has the general form

f(R) > threshold (6)
where f(.) is a random walk or a fractal function.
The basic steps of the proposed algorithms are:
1. Start with a given watermarking algorithm and a given test

statistic f(x), e.g. a correlation sum (2), which has a general
form f(x) > c

2. Fractalize the boundary using the fractal generation
technique that will be discussed in subsection 3.2.

3. Use the same decision inequality but with a new test
statistic using the new fractal boundary.

4. Modify the watermarked signal if necessary to assure the
same distance from the boundary after modification.

It should be noted that other nonparametric curves can be used
as well. The fractal curves are used because of its relatively
straightforward generation. This is important because the
boundary should by stored at the decoder with high precision.
So instead the procedure for generating the curve can be used.

3.2 Fractal Generation
This class of curves, called Peano curves [5], has been well
studied for representing self-similar structures. Very
complicated curves can be constructed using simple repeated
structures. The generation of these curves is done by repetitive
replacing of each straight line by the generator shape. So each
shape can be completely constructed by the initiator  (figure 2a),
and the generator (figure 2b). Many combinations of the
generator and the initiator can be employed to generate different
curves.

a. Initiator b. Generator

c. After 2 iterations d. After 4 iterations
Figure 2. Peano Curve Example

This family of curves can be used to represent statistically self-
similar random processes, e.g. the brownian random walk [7, ch.
11], and some fractal curves can approximate a random walk
process.

3.3 Modifying the decision boundary
The most important step in the algorithm is modifying the
decision boundary to have the desired fractal shape. In figure
(3), we give an example with a decision boundary of the
correlator in R2. The original boundary is a line, and the
modified decision boundary is as shown in the figure.
There is a tradeoff in designing the decision boundary. The
maximum difference between the old decision and the modified
one should be large enough so that the new boundary cannot be
approximated by the old one. On the other hand it should not be
very large to avoid excessive distortion.

Figure 3. Example of modifying the decision boundary

After modifying the decision boundary, the watermarked signal
X may need some modification to sustain the same shortest
distance from X to the decision boundary. This is done by
measuring the shortest distance between X and the new
boundary, and moving X along the direction of the shortest
distance in the opposite direction (from X to X′). However this
modification is not critical for the performance especially if the
variance of the test statistic is small or if the distance between X
and the original boundary is large compared to the maximum
oscillation of the fractal curve.
Instead of evaluating the log likelihood function of the forms
(2), (4), and (5), the chaotic curve is evaluated for the received
signal and is compared with the same threshold to detect the
existence of the watermark.

3.4 Practical Implementation
Instead of applying multidimensional fractalization, a simplified
practical implementation that achieves the same purpose is
discussed in this section.
If the Gaussian assumption is adopted, then the test statistic in
(2) is optimal according to the Neyman-Pearson theorem [8,ch.
3]. Instead of this test statistic, two test statistics are used for the
even and odd indexed random subsequences r[2k] and r[2k+1]:

T1(R) = (2/N). ∑k r[2k].w[2k] ,
T2(R) = (2/N). ∑k r[2k+1].w[2k+1]
T = (T1  T2) (7)

Under Η0, E(T) = (0,0), and under Η1, E(T) = (1,1) and in both
cases cov(T) = σ2I. The Gaussian assumption of both T1 and T2

is reasonable if N is large by invoking the central limit theorem.
Also if the original samples are mutually independent, then T1

and T2 are also independent. The decision boundary in this case
is a line (with slope –1 for the given means). If this line is
fractalized as discussed in the previous subsection, then the

H0

H1

Original

Modified

•• X

•• X’



-3 -2 -1 0 1 2 3
-3

-2

-1

0

1

2

3

µ1

µ0

H0

H1

Original boundary

corresponding decision boundary in the multidimensional space
will be also nonparametric.
The detection process is straightforward in principle but
nontrivial. The vector T is classified to either hypothesis if it
falls in the corresponding partition. However, due to the
nonparameteric characteristic of the boundary this classification
is not trivial. First the unambiguous region is defined as shown
in figure 4, that is outside the oscillation of the fractal curve,
which are the regions outside the doted lines. For points in the
ambiguous area, we extend two lines between the point and both
centroids. If one of them does not intersect with the boundary
curve, then it is classified to the corresponding hypothesis. Here
it should be emphasized that the boundary curve is stored at the
detector and it should be kept secret.

Figure 4. Detector operation

This detector may look similar to the one proposed in [9] using a
different approach. However, the fundamental difference is that
in our case there is no uncertainty in the decision, i.e. it is a pure
deterministic operation. Also the attacker in [9] needs a linear
number of iterations (with the signal size) to estimate the
decision criterion. For our detector the boundary is non-
differentiable anywhere (at least theoretically), and hence
estimating it using tangents as described in [9] will not work,
and the estimation will not be linear with the signal size.

4 RESULTS

The technique proposed in this paper is quite general, and can be
applied to any watermarking scheme without changing the
embedding algorithm. The algorithm performance is in general
very similar to the underlying watermarking algorithm with its
optimal detector. However, for some watermarked samples, we
may need to increase the watermark strength as illustrated in
figure 3.
The Receiver Operating Characteristic (ROC) of the proposed
algorithm is close to the ROC of the optimal detector, and it
depends on the maximum oscillation of the fractal boundary
around the original one. In figure 5, we illustrate the
performance for the system discussed in section 3.4, when the
mean under Η0 is (0,0) and under Η1 is (1,1), and the variance in
both cases is 1. As noticed from the figure the performance of
the system is essentially the same as the optimal performance
especially for small curve oscillation.

Figure 5. ROC of the proposed algorithm

5 CONCLUSION

In this work, we proposed a new class of watermark detectors
based on a nonparametric decision boundary. This detector is
more secure than traditional detectors especially when it is
publicly available. The performance of the new algorithm is
similar to the traditional ones, but it has the advantage of filling
the security gap of the detector.
The proposed detector can work with any watermarking
schemes without changing the embedder structure. However,
sometimes the strength of the watermark should be increased
slightly to compensate for the new boundary.
Future work includes applying the proposed algorithm to
common audio and image watermarking and studying the
optimal structure of the modified decision boundary to optimize
the detector performance.
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