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ABSTRACT

In this paper a multichannel subspace detector is
proposed based on a separable spatio-temporal linear
model. The generalized likelihood ratio test (GLRT)
for this model is derived for the case of coloured Gaus-
sian noise and known temporal and covariance matrices.
Simulation results support the theory and illustrate the
benefits of the spatio-temporal detector versus channel-
by-channel detectors for low values of SNR.

1 INTRODUCTION

The detection of a signal in noise is a frequently
encountered problem in different signal processing do-
mains. Usually, there is not a complete previous knowl-
edge of the signal to detect. In these cases, the Gener-
alized Likelihood Ratio Test (GLRT) is often used [1].
If the waveform of the signal is perfectly known (except
for a proporcionality constant), the GLRT detector is
the well-known matched filter. In several applications
the signal waveform is not completely known, and a
weaker assumption is often used where the signal lies
in a subspace. The GLRT detector is then the matched
subspace detector [2] of which the matched filter is a
rank-one particular case.

In the field of biomedical signal processing, many bio-
electrical signals, such as the electrocardiogram (ECG),
electroencephalogram or body surface potential maps
are recorded using a set of electrodes spatially dis-
tributed on the body surface. However, most signal
processing methods rely on one-dimensional techniques,
either in time or in space domain. In this paper, we
propose a framework for detection problems in bioelec-
trical signals based on a multichannel spatio-temporal
approach. In most of these applications, a wide variety
of signal waveforms can be found (e.g. QRS morpholo-
gies in the ECG), and these are often modelled according
to linear expansions.

The rest of the paper is organized as follows. A mul-
tichannel signal model is introduced first based on trun-
cated spatio-temporal linear expansions. The GLRT for
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this model is considered in Section 3. A detection perfor-
mance measure is given in Section 4. Some simulations
are given in Sections 5 and 6.

2 MULTICHANNEL SIGNAL MODEL

The information conveyed by a multichannel signal
can be represented by a matrix D∈RN×L, N being the
number of samples and L the number of sensors. The
signal D can be decomposed as a linear combination
of N×L linearly independent spatio-temporal functions
(elementary matrices) Bij

D =
N∑
i=1

L∑
j=1

wij Bij . (1)

The linear coefficients, wij , give information of the
strength of the contribution of every function Bij in
the signal. Each Bij carries spatial as well as temporal
characteristics of the signal.

As these two characterstics are often decoupled, we
can assume that the basis functions Bij are separable
(rank-one matrices)

Bij = ti sTj , (2)

where the temporal and spatial elementary vectors ti
and sj are the i -th and j -th column of two matrices
denoted respectively by T and S. The only restriction
for these matrices is that they must be full rank. The
linear expansion (1) can then be written in matrix form
as

D = T W ST , (3)

where the N×N matrix T contains the temporal infor-
mation of the basis functions, W is the linear coefficient
matrix formed by wij , and the L×L matrix S contains
the spatial information of the basis functions. The par-
ticular case of channel-by-channel signal expansion can
be obtained from (3) by setting S=I. Note that even if
the spatio-temporal characteristics of the signal are not
decoupled, eq. (3) still denotes a valid representation of
any signal.
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Truncated expansions are usually needed in several
applications, such as data compression, feature extrac-
tion or filtering and can be interpreted as a restriction
of the signal to a given subspace. Truncation in the lin-
ear model in eq. (3) is achieved by selecting p<N basis
functions from T and/or q < L basis functions from S
yielding the model D = Tp W STq , where the columns of
Tp and Sq are the truncated basis functions. For sim-
plicity, in the rest of the paper, the subscripts p and q
will be dropped.

3 GLRT FOR MULTICHANNEL SIGNAL
MODEL

The separable linear model for a N×L multichannel
signal D plus noise can be written as

X = D + N = TWST + N (4)

where T and S are temporal and spatial truncated ba-
sis function matrices with dimensions N×p and L×q
respectively, and N is multichannel noise. The signal
to detect is assumed to lie within the signal subspace
spanned by {T, S}.

The noise is assumed to be zero-mean Gaussian. Noise
is usually considered uncorrelated, but in multichannel
biomedical signals, there is a clear correlation of physi-
ological noise (e.g. EMG noise or motion artifacts) be-
tween nearly placed electrodes. Accordingly, the case
of Gaussian colored noise will be consider here. In gen-
eral, the second-order moment of multichannel noise is
described by a fourth-order tensor. A common simplifi-
cation is to assume a separable autocovariance function

E {nij nkl} = σ2 ct (i, k) cs (j, l) , (5)

where σ2 is the noise variance, ct (i, k) denotes the nor-
malized temporal correlation between time instants i
and k, and cs (j, l) the normalized spatial correlation
between channels j and l. Then the equivalent NL×NL
autocovariance matrix can be written as

C = E
{

vec (N) vec (N)T
}

= σ2 (Cs ⊗Ct) (6)

where vec (N) is the NL×1 column vector with all the
samples from the noise matrix N ordered by columns,
⊗ denotes the Kronecker product, Ct is the N×N nor-
malized temporal correlation matrix and Cs is the L×L
normalized spatial correlation matrix.

The hypothesis testing problem is

H0 : W = 0
H1 : W 6= 0 . (7)

The GLRT decides between H0 and H1 depending on

LG (X) =
p
(
X; Ŵ1

)
p (X; W = 0)

>
< γ , (8)

where Ŵ1 is the maximum likelihood estimator of W
under H1.

The p.d.f. of X can be written as

p (X; W) = p (vec (X; W)) (9)

=
exp

(
−1
2σ2

[
vec
(
X−TWST

)]T
C−1

[
vec
(
X−TWST

)])
(2πσ2)NL/2 det1/2 C

Using the properties of the inverse and determinant of
a Kronecker product of matrices,

C−1 = C−1
s ⊗C−1

t and det (C) = det (Cs)
N det (Ct)

L
,

(10)
the p.d.f. (9) can be written as

p (X; W)=
exp

(
−1
2σ2 tr

{(
X−TWST

)
C−1
s

(
X−TWST

)T
C−1
t

})
(2πσ2)NL/2 det (Cs)

N/2 det (Ct)
L/2

.

(11)

The maximum likelihood (ML) estimator of the coef-
ficient matrix under H1 is obtained as

Ŵ1 = arg max
W
{p (X; W)}

=
(
TTC−1

t T
)−1

TTC−1
t XC−1

s S
(
STC−1

s S
)−1

. (12)

Thus, D̂1 = TŴ1ST is the ML estimator of the signal
under H1, and it is an oblique projection of X into the
subspace defined by T and S. But using the metric
defined by the weighted inner product

〈A,B〉Cs,Ct
= tr

{
A C−1

s BT C−1
t

}
, (13)

and its induced norm, D̂1 is the orthogonal projection
of X.

From (8), (11), (12) and (13), the GLRT can be writ-
ten as

T (X) = 2 logLG (X)

=

〈
X,XT

〉
Cs,Ct

−
〈
X−D̂1 , X−D̂1

〉
Cs,Ct

σ2

=

〈
D̂1,X

〉
Cs,Ct

σ2
=

〈
D̂1, D̂1

〉
Cs,Ct

σ2
. (14)

Two alternative interpretations can be given of the test
statistic in (14): an estimator-correlator detector, but
using the metric defined in (13) (see Fig. 1), and the
ratio of the norm of the projected signal on the subspace
spanned by {T, S} to the mean noise power. Table 1
gives the expression of the GLRT statistic T (X) for some
particular cases, including uncorrelated/correlated noise
and unitary/non-unitary transformations.

An alternative interpretation of the detector arises if
C−1
t and C−1

s are decomposed as:

C−1
t = HT

t Ht C−1
s = HT

s Hs . (15)

A modified observed signal X′ can be defined using Ht

and Hs as filtering matrices

X′ = Ht X HT
s = T′WS′T + N′ , (16)
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Unitary T and S Non-unitary T and S

Colored Noise T (X) =
tr
{

T
(
TTC−1

t T
)−1

TTC−1
t X C−1

s S
(
STC−1

s S
)−1

STC−1
s XTC−1

t

}
σ2

Uncorrelated Noise T (X) =
tr
{

TTT X SSTXT
}

σ2
T (X) =

tr
{

T
(
TTT

)−1
TT X S

(
STS

)−1
STXT

}
σ2

Table 1: GLR Tests for different characteristics of the noise and the elementary matrices.

HX=D+N
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Figure 1: Block diagram of the GLRT as an estimator-
correlator detector.

where T′ = HtT and S′ = HsS. It is easy to show that
N′ = Ht N HT

s is uncorrelated (E{n′ik n′jl} = σ2 δij δkl).
After noise prewhitening, the detector structure can be
notably simplified because the noise is uncorrelated (see
Table 1). The related realization is shown in Fig. 2.

Orthogonal

C Ct s

X X’=H X HT
t s
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Spatio−temporal

projection

T’ , S’ D’

I,I

(X’)T
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σ2

H 1
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, <

> γ

Figure 2: Block diagram of the GLRT as an estimator-
correlator detector of prewhitened data.

The test statistic from (14) for the prewhitened data
is

T (X′) =

〈
D̂′1,X

′
〉

I,I

σ2
=

〈
D̂′1, D̂

′
1

〉
I,I

σ2
, (17)

which can also be interpreted in two different ways: as
an estimator-correlator detector for whitened data and
the ratio between the energy of the projected signal and
the mean noise power.

Using (13), (15) and (16) it can be shown that both
test statistics (14) and (17) are identical

T (X) =
tr
{

D̂1C−1
s XTC−1

t

}
σ2

=
tr
{

HtD̂1HT
s HsXTHT

t

}
σ2

= T (X′) . (18)

4 DETECTION PERFORMANCE

Given a certain signal D, the p.d.f. of the test statistic
T (X) under assumption H0, T (X; H0), is a χ2

pq distri-
bution since T (X) can be expressed as the summation

of p×q independent normalized zero-mean Gaussian ran-
dom variables. In a similar way, the p.d.f. of T (X; H1)
is that of a χ′2pq (λ) distribution where the centrality pa-
rameter is

λ =
〈D,D〉Cs,Ct

σ2
=
〈D′,D′〉I,I

σ2
. (19)

From the distributions of the GLRT under both hy-
potheses, it is straightforward to obtain the detection
and false alarm probabilities (PD and PFA) for different
threshold values γ, i.e. the Receiver Operating Charac-
teristic (ROC) curve.

An often used criterion for the evaluation of a detector
is the distance measure between distributions

d =
|E {T (X); H1} − E {T (X); H0}|√

0.5 [var (T (X); H0) + var (T (X); H1)]
(20)

which can be calculated using the properties of the pre-
viously given p.d.f.’s

d =
p q + λ− p q√

0.5 [2 p q + 2 p q + 4λ]
=

λ√
2 p q + 2λ

. (21)

For a given subspace dimensionality, {p, q}, the perfor-
mance depends on λ which is the energy to noise ratio
once the signal has been prewhitened. Note that sig-
nals with equal SNR may have different energy after
prewhitening and thus different detection performance.

5 SIMULATION SETUP

To support the above theory and to evaluate the per-
formance of the spatio-temporal subspace detector we
used a Monte Carlo simulation. The signals used in the
simulation were 9-channel 1000 Hz sampled ECG signals
(specifically, QRS complexes). The spatio-temporal sep-
arable subspaces were obtained calculating the tempo-
ral and spatial Karhunen-Loève Transform (KLT) bases
from a total of 37000 heartbeats from 114 patients. The
KLT has the property of optimal energy packing. Thus,
it seems a reasonable choice for subspace detection. The
signal subspace {T,S}, was chosen by selecting the first
p = 5 and q = 2 KL basis functions.

Clean signals matching the model were simulated con-
sidering the elements of W, wij as independent Gaus-
sian random variables with zero-mean and variance
σwij = λiπj , being λi and πj respectively, the eigen-
values associated with ti and sj. For each realization of
W, a signal D = TWSTwas computed.
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Spatial and temporal noise autocovariance matrices
Cs and Ct were estimated from isoelectric intervals of
the database. A colored noise realization was computed
as N = H−1

t VH−1T

s , where V is uncorrelated Gaussian
noise.

Four different detectors were compared: matched fil-
ter (MFD), as a clairvoyant detector, spatio-temporal
subspace detector (ST-SD) in (14), channel-by-channel
temporal subspace detector (T-SD) and energy detector
(ED). The last two detectors can be understood as par-
ticular cases of the ST-SD, making S = I for T-SD, and
S = I, T = I for ED.

6 RESULTS

First, a Monte Carlo simulation analysis was per-
formed using a simulated signal D with 3000 noise real-
izations. The computed ROC curves for different SNR
and methods are shown in Figure 3.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

ROC with SNR=−20dB

Matched Filter
Spatio−Temporal subspace detector
Temporal subspace detector
Energy detector

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

ROC with SNR=−20dB without prewhitening

Matched Filter
Spatio−Temporal subspace detector
Temporal subspace detector
Energy detector

(a) (b)

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

ROC with SNR=−15dB

Matched Filter
Spatio−Temporal subspace detector
Temporal subspace detector
Energy detector

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Alarm Rate

D
et

ec
tio

n 
R

at
e

ROC with SNR=−15dB without prewhitening

Matched Filter
Spatio−Temporal subspace detector
Temporal subspace detector
Energy detector

(c) (d)

Figure 3: ROC curves for different detectors.

We appreciate in Figure 3(a) that, for SNR=-20 dB,
the ST-SD clearly outperforms the T-SD, and is near
the upper bound defined by the non-realizable MFD .
For SNR =-15 dB in pannel (c), all detectors improve
their performance. On the other hand, comparing pan-
nels (b) and (d) with (a) and (c), a clear degradation
is found for all detectors when they are applied assum-
ing that the noise is uncorrelated (without any previ-
ous whitening). These results highlight the relevance
of including the noise autocovariance to achieve a good
detection performance.

Figure 4 shows the theoretical and simulated distance
measure d for the studied detectors. The experimen-
tal results fit clearly the theoretical ones. When SNR
is high enough, the performance of ST-SD, T-SD and
ED converge, being otherwise always poorer than the
unreachable MFD.

−30 −20 −10 0 10 20
10

−2

10
−1

10
0

10
1

10
2

10
3

Signal to Noise Ratio (dB)

di
st

an
ce

 b
et

w
ee

n 
di

st
rib

ut
io

ns
 d

 

Matched Filter
Spatio−Temporal subspace detector
Temporal subspace detector
Energy detector

Figure 4: Distance measure between distributions
against SNR.

A second simulation considered 50 different signal
morphologies in order to independize the results from a
particular waveform. 500 noise realizations were added
to each morphology. The ROC curves computed from
the total of simulations are given in Figure 5. They show
a similar behaviour as the ones in Figure 3.
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Figure 5: ROC using 50 different waveforms.

7 CONCLUSIONS

A subspace detector has been analyzed for multichan-
nel signals in noise with known temporal and spatial co-
variance matrices. It has been shown that for low SNR,
it outperforms the classical channel-by-channel tempo-
ral detector, nearly achieving the clairvoyant matched
filter, which cannot be used in some applications with a
wide range of waveforms.

When the noise is correlated and the detector assumes
that it is uncorrelated, the detection performance de-
grades notably making the detectors useless. In real ap-
plications, covariance matrices are unknown and need
to be estimated. The effect of the estimation error in
detection performance should be evaluated in a further
work.

Selection of the subspace and its dimensionality {p, q}
were not analyzed in this paper. Future works should
consider the effect of model mismatching.
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