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ABSTRACT The Mojette transform is a fast and exact 
discrete Radon transform. Its inverse also share the same order 
of complexity properties. Spline functional spaces are here 
used to derive a class of new Mojette transforms. Algorithms 
with linear complexity (in terms of projections and pixels 
number) are derived. The transform capabilities are shown first  
to model the discrete tomographic acquisition process. This 
efficient transform is also exemplified in the area of real-time 
packet network transmissions where it is able to fight against 
losses and noise degradations. 

1. INTRODUCTION 

 
During the last decade the Shannon’s information theory has 
been generalized by Unser and AlDroubi [1,2,3]. The 
continuous-discrete equivalence of signals of Shannon’s 
theorem has been extended from the subspace of bandlimited 
functions to spline subspaces of any order. In this view, the 
band-limited signals only represents a specific case of a spline 
subspace of infinite order. This theory is of major practical use 
when one want to model a specific device or acquired signals. 
This is particularly true for image acquisition. Section 2 gives 
some brief recalls on this theory. In section 3, the Dirac-
Mojette transform, which is a discrete exact Radon transform, 
is presented. Some of its application developped for five years 
are presented. In contrast, section 4 use the spline theory to 
derive the behavior of the novel spline Mojette transform and 
explains the design of the exact digital filtering needed for 
increasing or decreasing the spline order. Section 5  shows two 
different uses for the obtained class of transform. The first 
example is image processing and the relationships between the 
presented operator and classical filtered backprojection (FBP) 
encountered in tomography. The second example is 
multimedia transmissions where information packets 
describing spline Mojette projections are used to fight against 
noise as a forward error correcting (FEC) scheme. 

2. SPLINE INFORMATION THEORY 

 
In this section the results of Unser-AlDroubi theory useful in 
this paper are briefly recalled. A polynomial spline is a 
function that is piecewise polynomial of degree n with the 
additional smoothness constraint that the polynomial segments 
are connected together in a way that insures the continuity of 
the function and its derivatives up to order (n-1). In the present 
context, the generic function space of polynomial splines of 
order n is denoted by Sn(IR). Specifically, Sn (IR) is the sub-set 
of functions in L2(IR)  that are of class Cn-1 and are equal to a 
polynomial of degree n on each interval [k, k+1) with k ∈  Z 
when n is odd, and [k-1/2,k+1)] with k ∈  Z when n is even. An 

equivalent definition of Sn(IR), which is due to Schoenberg,  
states that any polynomial spline can be represented by a 
weighted sum of shifted B-splines and is therefore uniquely 
characterized by its sequence of B-spline coefficients c(k).  
The fundamental characteristic of the B-spline basis functions 
is their compact support. It is also possible to construct 
alternative sets of shift invariant basis functions {ϕ(x-k), k∈ Z} 
by taking linear combinations of B-splines [3]. In practice, it is 
often of interest to determine the B-spline coefficients of a 
polynomial spline fn(x) that precisely interpolates a given 
sequence of data points {f(k)}k∈ Z (discrete signal): this is the 
cardinal spline interpolation which can be obtained by digital 
filtering  [2]. In summary, Unser-AlDroubi (resp. Shannon) 
theorem proceeds from the L2 function, projects it into the 
spline (resp. band-limited) space with a continuous filtering, 
then sample the function into the spline (resp. band-limited) 
space and are capable of reconstructing the exact continuous 
version of it using a second continuous-discrete convolution 
equation which performs the interpolation step inside the given 
space.  

3. DIRAC MOJETTE TRANSFORM 
 As judicious way to obtain a discrete exact Radon 
operator proceeds as follows. The continuous Radon transform 
described by : 

proj(t,θ)=R f(x,y)= ⌡⌠
-∞

+∞

⌡⌠
-∞

+∞
 f(x,y) δ(t –xcosθ +ysinθ) dxdy,     (1) 

represents the continuous function f(x,y) by an infinite set of 
projections. The functional projection of f(x,y) onto a spline 
space {ϕ(x-k), k∈ Z} leads to an interpolation equation :  

fϕ (x,y) = 

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f (k,l).ϕ(x-k).ϕ(y-l).                            (2) 

When the discrete pixel grid is considered in the tomographic 
problem, the function f(x,y) in Eq. (1) is replaced by fϕ (x,y)  
of Eq. (2). This leads (after inverting discrete and continuous 
sum signs) to a definition of the continuous projection from a 
discrete image and the spline interpolating function. 
In this paragraph, ϕ is taken as ϕ(x) = δ(x). Eq. (1) becomes 

projδ(t,θ) =

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f(k,l). [  

                     ⌡⌠
-∞

+∞

⌡⌠
-∞

+∞
δ(x-k)δ(y-l)δ(t–xcosθ+ysinθ)dxdy],         (3) 



which simply reduces to: 

projδ(t,θ)= 

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f (k,l) δ(t –k.cosθ +l.sinθ).                 (4) 

 
Since functions cosθ and sinθ are giving pure real values, 
(kcosθ +lsinθ) is of elliptical form and the only possibility to 

equally sample variable t is to use angles of the form tanθ = 
q
p . 

In such a case, cosθ = 
p
h and sinθ = 

q
h , and Eq. (4) resumes as : 

projδ(t,p,q) = 

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f (k,l)  δ(t.h – k.p + l.q)                (5) 

To avoid ambiguities, only integer couples (p,q) with 
GCD(p,q) = 1 give acceptable angles; moreover, the q value is 
restricted to positive values. Performing the projection bin 
sampling leads to the Dirac-Mojette transform definition : 

Mδf(k,l)=proj(b,p,q)=

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f(k,l)∆(b–k.p+l.q)             (6) 

where 

∆ (b) = 
 1 if b=0
0 if b ���  is the discrete Kronecker symbol. 

 
Notice that the discrete Mojette operator features some 
interesting properties as a variable number of bins onto a 
projection and an angle-dependant sample spacing. The direct 
and inverse algorithms exhibit a similar order of complexity of 
O(IN) where I is the number of projections and N the number 
of pixels. More theoretical results for inverse Mojette 
transform conditions are available on [4,5,6]. 

4. SPLINE MOJETTE TRANSFORM 

 
4.1 Spline 0 Mojette transform definition 
Let start with the Mojette transform for spline of zero order. In 
this case, the interpolator can be defined as : 

ϕ0 (x) = 


 1 si  x < ½ 

½ si  x = ½
0 sinon

 .                                                  (7)      

In this case, Eq. (1) becomes 

proj0(t,θ)=

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f(k,l). kernel0(k,l,t, θ)                  (8) 

with kernel0(k,l,t, θ) = ⌡⌠
-∞

+∞

⌡⌠
-∞

+∞
 ϕ0(x-k) ϕ0(y-l)δ(t–cosθ+y)dxdy. 

Using the same angle discretization as above leads to : 

kernel0(k,l,t,p,q)= ⌡⌠
-∞

+∞

⌡⌠
-∞

+∞
 ϕ0(x-k) ϕ0(y-l)δ(th–px+qy)dxdy.     (9) 

 

This transform projects each flat pixel and generates 
trapezoidal shapes onto the projection as depicted in figure 1. 
Next, the projection is sampled at rate b=th leading to the 
definition of the spline 0 Mojette transform : 

M0f(k,l)=

+∞

Σ
 
k=-∞

 

+∞

Σ
 l=-∞

 f(k,l)kernel0(k,l,b,p,q)∆(b–k.p+l.q)    (10) 

Figure 1 : Projections of a pixel for spline 0 Mojette. 
 
Another way of expressing the spline-0 Mojette transform is to 
referred to the previous Dirac Mojette. Because of the 
particular sampling onto the projection, it it easy to see that the 
trapezoidal shape is always the result of the convolution of two 
step functions of integer width of p and q values. 
 

Figure 2 : Decomposition of integer width  step functions. 
 
The continuous expression of the convolution in (9) leads to 
different kernels kernel0(0,0,t,p,q) depending of the oddness of 
p and q (p and q can not be both even since GCD(p,q)=1). 
Figure 2 explains the way the trapezoidal shape is decomposed 
with respect to the 1D grid. This is summarized by Eqs (11) 
and (12) : 
 If p and q odd: 

kernel0(0,0,t,p,q)=ϕ0(t)*ϕ0(t)* ∑
i=-

p+1
2

p+1
2

  δ(t-i∆) * ∑
j=-

q+1
2

q+1
2

  δ(t-j∆) .   (11) 

If p odd and q even : 

kernel0(0,0,t,p,q)=ϕ0(t)∗ϕ 0(t-
1
2)* ∑

i=-
q
2

q+1
2

  δ(t-i∆) * ∑
j=-

p+1
2

p+1
2

  δ(t-j∆) . (12) 

0 1 0 1-1

0 1 0 1-1



The goal is to obtain now a discrete version of the kernel to be 
used in Eq. (10). The sampling of the small Dirac combs is 
now easy and will not interfere with the sampling process. 
Since we have B-spline functions, ϕ1 (x) =ϕ0 (x) *ϕ0 (x) which 

discrete version is only a centered Dirac, and ϕ0(t)∗ϕ 0(t-
1
2) 

gives a small additional discrete kernel equals to (½ ½). 
Finally, the expression of the Spline 0 Mojette transform is 
given by : 
M0f(k,l)= Mδf(k,l) * kernel0(k,l,b,p,q),                              (13) 
with 

kernel0(0,0,b,p,q)= 





if p and q odd:

   
(1 1 1 … 1)
     p  * 

(1 1 1 …)
     q  

 if p or q even:
 ½ (1 1 1 … 1)
     p  * 

(1 1 1 …)
    q *

(1 1)
 

     (14) 

The following table shows some examples of (p,q) angles 
decomposition : 
(p,q) Kernel Decomposition 
(1,0)  (1)  (1) 
(1,1)  (1)  (1) *(1) 
(2,1) ½ (1 2 1 )  ½(1 1)*(1 1) *(1) 
(3,1) (1 1 1 )  (1 1 1) *(1) 
(5,2)  ½(1 3 4 4 3 1) ½(1 1)*(1 1 1 1 1) *(1 1) 

Table 1 : Decomposition of  some discrete kernels. 
 
 
4.2 Spline n Mojette transform definition 
Using B-spline basis allows for an easy generalization to 
higher spline order. From spline of order 0 to spline of order 1, 
only an additional convolution by the same discrete kernel has 
to be realized. Its definition is thus given by : 
M1f(k,l)= M0f(k,l) * kernel0(k,l,b,p,q),                              (15) 
 
Definition of the spline of order n Mojette transform only 
needs to performs the (n+1) convolutions by kernel0(k,l,b,p,q) 
from the projections obtained by Eq. (6).  
It is important here to precise that the obtained projections (or 
image) are not interpolative splines but only coefficients. 
However, the use of B-spline in this context is relevant since 
the smoothing effect (correlation onto the projections) will be 
the key for stable communications in the applications. If one 
desires the image or projection obtained from the B-spline 
coefficients this is also obtained by discrete convolutions [1]. 
4.3 Spline n Mojette algorithms 
Algorithms to compute the direct transform of the spline-n 
Mojette transform directly follow from Eqs. (6),(13), and (15). 
For a single projection (p,q), Eq. (6) computes the initial 
projection in O(N) where N is the number of pixels. Then the 
small convolutions by “1” kernels can start. Notice that such a 
convolution can be performed by shifting the projection line 
and adding the original and shifted lines. Inverting Eq. (6) has 
been presented in [4,5]. Inverting Eq. (13) can be simply made 
by a recursive filtering which is also very simple to implement 
here thanks to the very simple filters derived in Eq. (14). 
 
 
 
 
 
 

5. APPLICATIONS 
 
5.1 Tomography  
The Dirac-Mojette transform is a very interesting tool for 
image processing since it only uses additions (resp. 
subtractions) to compute the direct (resp. inverse) transform. 
However, this version can not be useful for tomographic 
reconstruction since only “discrete” lines are summed up. 
However, the spline 0 Mojette transform corresponds to a 
summation of the entire Euclidean line as shown in Fig. 3 
which compares the Dirac and spline 0 Mojette projection at 
angle (2,1). 

Figure 3 : Projections of an image corner at angle (2,1). 
 
Tomographic devices are nowadays enough accurate to 
simulate the angle demanded by the angular specificities of the 
Mojette transform. However, the sampling onto the projection 
is variable and very fine which can not be directly 
implemented. In the case of parallel acquisitions systems the 
use of other spline approximations (noise regularization onto 
the projection prior to reconstruction) are on study to solve for 
it. In the case of non-parallel acquisition (e.g. X-ray scanner or 
PET) each bin value can be approximated first with respect to 
the discrete acquisition geometry. Then a second step is to use 
the spline Mojette transform in a random variable context to 
perform the reconstruction. In that case, the major advance is 
the exact treatment of the null space of the discrete inverse 
operator which is connected to the discrete tomography field 
(polyaminos). Instead of using the continuous theory which 
decomposes the null space with Bessel functions and does not 
take into account the discrete number of counts per bin, the 
inverse spline Mojette operator provides a decomposition of its 
null space in terms of  “phantoms” corresponding to 
convolutions of valuated two pixels elements in the directions 
of projections.     
 
5.2 Error correcting codes for information transmissions  
The multiple information description is of great interest for 
packet communications. By spreading the initial information 
into two (or more) bulks of information with redundancy 
between each portion, it allows for packet losses onto the 
network. The Dirac Mojette transform has proven its adequacy 
to solve for this problem. The initial information (generally a 
bitstream) is first mapped onto a “2D geometrical buffer” 
which is projected onto a set of redundant projections (the 
redundancy is chosen according to network losses statistics). 
The possibility of reconstructing the initial data from a set of 
(I-L) packets when I projections (packets) are computed and 
sent and L packets are lost can be easily built with the Mojette 
transform. Notice that for network communications, the 
summation operator is replaced with a XOR. The first interest 
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of the Mojette transform is to generalize the number of 
descriptions that can be used. The second advantage is to use a 
scalable description of the source (e.g. available for 
JPEG2000, SPIHT, MPEG4 CoDecs) and to transmit these 
projections (using a specific kind of geometrical buffer) along 
a network which does not implement quality of service 
properties as the Internet Protocol.  
However, the Dirac Mojette transform does not take into 
account the possible noise degradations of the sent packets. 
More and more network protocols tends to lighten their 
correcting codes for efficient data transmission because of the 
real-time constraints. If packets are going through mobile 
communications the ratio of noisy packets at destination will 
seriously increase. The spline Mojette transform is a good 
candidate for taking care of that problem. After the multiple 
description onto a geometrical buffer has been computed with 
the Dirac Mojette transform, data can be correlated by using 
the spline Mojette transform according to Eqs. (13,15). Each 
spline projection is then taller than the Dirac projection with a 
number of additional bins corresponding to the kernel 
described in Eq. (14). This can be viewed as an error 
correcting code onto each projection (whereas the Mojette 
transform by itself realizes a distributed error correcting code 
which power seems to corresponds to the number of 
projections minus one). Of course, the higher the noise 
encountered in the network, the higher spline order. Therefore, 
the spline order can be tune according to communications 
properties in real time if a feedback signaling channel is 
implemented (e.g. RTP for the Internet protocol). The last 
point to derive in this context is to understand the 
collaboration between the two error correcting codes 
implemented with the spline Mojette transform. 
 

6. CONCLUSION 

 
In this paper, the extension to the spline Mojette transform  
was presented. The discrete character of the transform allows 
for fast implementations. As for the classical spline theory, 
going from a spline order to another can always be made by 
small convolutions. The Dirac Mojette transform which has 
been used for five years for communications and image 
processing can be gracefully extended to the spline Mojette 
transform thanks to small additional kernels. Recursive 
filtering can be used to recover the Dirac Mojette transform 
from the spline Mojette transform. This allows for an optimal 
(linear) complexity in decoding the projections set. The spline 
Mojette transform is imperative to implement for new 
tomographic devices since the Dirac Mojette transform can not 
accurately represents the physical projection process. In packet 
communications, the role of the spline Mojette transform is to 
fight against noise via the additional smoothing provided by 
the B-spline coefficients that are transmitted (instead of the 
original samples). This efficient coding is able to react to the 
network real-time constraints both for losses and noise 
degradations.  
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