
ABSTRACT

This paper introduces a novel low-power VLSI architecture
dedicated to algorithms based on elastic graph matching.
The targeted application is face verification for low-power
mobile devices (e.g. mobile phones, personal digital assistants,
wearable computing devices). A description of the overall ver-
ification system is provided jointly to a detailed discussion of
the full-custom graph matching coprocessor.

1. INTRODUCTION
This paper presents a low-power VLSI architecture for Elastic
Graph Matching (EGM) algorithms applied to biometric face
verification. By carefully partitioning the EGM algorithms and
optimizing the implementation resources, the designed low-
power VLSI architecture features an optimal dataflow regular-
ity, avoids computational redundancies through data reuse, and
efficiently exploits the parallelism so that the operating fre-
quency and supply voltage can be lowered, which minimizes
power consumption. Moreover, the proposed architecture is mod-
ular, and can be adapted to process other biometric modalities.
The paper is organized as follows. Section 2 shortly recalls
properties of EGM algorithms, with focus on algorithms based
on morphological feature extraction. The proposed VLSI ar-
chitecture is then described in Section 3, considering first the
whole face verification system, followed by a detailed discus-
sion of the graph matching coprocessor, including data flow
organization, selected instruction set, and complexity estima-
tion. The conclusions are finally provided in Section 4.

2. ELASTIC GRAPH MATCHING
Elastic graph matching was chosen as the base algorithm for
face verification due to its intrinsic compensation for face ex-
pression variations and small pose variations [1][2]. In [3]
EGM is comparing advantageously to other methods such as
eigenfaces or neural network based methods.
EGM is a holistic method relying on a labeled graph structure
(Fig. 1) composed of local features centred on a set of nodes
connected by edges. A correspondence is searched between
features of a reference graph (which is orthogonal in our case)
and features of a test graph, which minimizes the euclidean
distance between these features. Node locations of the test
graph can be individually displaced from their orthogonal ar-
rangement (thus the name "elastic" matching) in order to fur-
ther minimize the distance score, where each node
displacement is in turn penalizing the score so as to take into

account the topological structure. The correspondence or
graph matching is done in two phases as described in [1]:
1) rigid matching is carried out by moving the rigid graph - in-
cluding possible rotation - in a given window of the image,
while 2) elastic matching is performed by displacing nodes
around their best rigid position in a pseudo-random order.

2.1 Morphological Elastic Graph Matching

The features extracted at each node represent a local informa-
tion on the pixel neighborhood. In [1], Gabor filtered images
are used to extract texture information. These filters provide
well localized features in both spatial and frequency domains
of the image, but they are computationally expensive. Another
type of features, based on mathematical morphology, is used
by Kotropoulos et al. [4], the face image being successively di-
lated and eroded by progressive circular structuring elements
(SE). These features are more illumination dependent than Ga-
bor features, but require simpler computations. For instance
using binary SEs on grayscale images, erosion (dilation) mere-
ly consists in finding the minimum (maximum) value on the
support of the SE. The architecture for EGM presented in this
paper was tested with 19 features extracted at each node, cor-
responding to the local pixel value, and to 9 dilations and 9 ero-
sions obtained with SEs ranging from 3×3 to 19×19 pixels
(Fig. 1). A detailed description can be found in [5]. It should be
noted that face verification is performed using luminance im-
ages, whereas colour images are generally used for efficient
face detection [7].
Hence 19 features are associated to each of the 64 nodes of the
graph. Following the “curse of dimensionality” postulate [8],
it is known that too many features can decrease the verification
rate. The 19 features are thus reduced to 3 most expressive fea-
tures using a Principal Component Analysis (PCA) [9]. These
features are further transformed into 3 most discriminating fea-
tures using a Linear Discriminant Analysis (LDA) [9]. Even
after LDA, the total number of features on all nodes is too high
to use e.g. an N-dimensional Bayesian classifier (N=64.3). But
assuming simplifications, namely that the likelihood of a class
is normally distributed in the feature space, and that the fea-
tures are independent, implying that the covariance matrix of
the features is diagonal, then the minimum distance classifier
is known to be the euclidean distance. The classification is then
considered as a two-class separation problem which can be
handled with a Bayesian classifier.

A LOW-POWER VLSI ARCHITECTURE FOR FACE
VERIFICATION USING ELASTIC GRAPH MATCHING

Jean-Luc Nagel, Patrick Stadelmann, Michael Ansorge and Fausto Pellandini
Electronics and Signal Processing Laboratory,

Institute of Microtechnology, University of Neuchâtel,
Rue A.-L. Breguet 2, CH-2000 Neuchâtel, Switzerland

Phone: +41 32 718 34 46; Fax: +41 32 718 34 02
e-mail: jean-luc.nagel@unine.ch



3. EGM ARCHITECTURE
High-level tasks such as classification are often irregular and
difficult to process in parallel, so that implementing them on
general purpose digital signal processors seems best suited
compared to designing dedicated hardware. However, for the
considered algorithm, it is worth partitioning the tasks into
morphology and graph matching, and assigning these tasks to
two specialized coprocessors. This solution allows a highly
regular and parallel internal structure of the coprocessors,
modularity, optimal data reuse and dataflow organization, low
system clock frequency, and low-power consumption.

3.1 System description

The face verification system (Fig. 2) is composed of a CMOS
image sensor (e.g. 320×240 pixels), a master processor for
high-level tasks (classification, database management, inter-
face control, initialization), a shared data RAM, and two co-
processors dedicated to multiscale morphology [5] and graph
matching, respectively. All these components are connected to
a shared standard bus (e.g. AMBA [6]) simplifying the inser-
tion of extra “IP-blocks” (e.g. a face detection coprocessor).
The whole system could be realized as a System-on-Chip
(SoC) to minimize the number of off-chip interconnections,
which are a major source of power dissipation. The distribu-
tion of morphology and graph matching computation over 2
coprocessors was made because the related operators are com-
pletely different, morphology requiring comparison calcula-
tions, whereas feature reduction and distance computation
involve multiply-accumulate (MAC) operations. Separating
these tasks greatly simplifies the sequencing of both coproces-
sors. Moreover, it is also possible to replace the morphology
coprocessor in order to extract other kinds of local features
(e.g. Gabor wavelets), thus exploiting the system modularity.
The system components are all slaves of the master processor,
which can read from - and write to - local memories and regis-
ters of these components (memory mapped registers). When-
ever notified by the master processor, each slave (sensor,
coprocessors) becomes momentarily master of the shared
memory. The master processor holds thus also the role of bus
arbiter. Moreover, the same system clock signal drives all
components to further simplify the synchronization.

3.2 Matching coprocessor

The matching coprocessor (Fig. 3b) is responsible for PCA and
LDA feature reduction, euclidean metric calculation between
features, and deformation penalty calculation. All these opera-
tions involve MAC operations and therefore can be highly ac-
celerated on an architecture providing vectorized MAC units,
and optimized memory and register structures for local data re-
use. The coprocessor architecture is divided into an addressing
unit (Fig. 3a) and vector MAC units (Fig. 3c). A program
memory embedded in a local RAM, and an instruction decoder
providing hardware support for nested loops, allow sequencing
modifications, thus improving the global modularity. For in-
stance it is possible to modify the pseudo-random order of the
nodes during elastic matching, the number of elastic iterations,
and also the number of nodes and features (although the latter
are limited to a maximum of 64 nodes and 19 features due to
the number of registers and their size).
The Addressing Unit (AU, Fig. 3a) contains two pairs of reg-
ister banks holding the (x,y) coordinates of the "current" - i.e.
currently processed - node positions, and the "best" node posi-
tions found so far. Every time the euclidean distance related to
the "current" node positions outperforms the one of the "best"
node positions found, the latter become overwritten by the
"current" node positions. An adder and a set of immediate val-
ues are used to increment the indexes needed for external
memory addressing, namely the morphology level index, node
index, and node coordinates.
The MAC units (e.g. MAC Unit 3 in Fig. 3c) comprise a mul-
tiplier, an adder, and a local register bank that can perform one-
cycle MAC operations. Two local memories furnish the PCA/
LDA coefficients and reference feature values. These memo-
ries dispose of an embedded output register and are accessed
using indirect addressing. When data are read, the next data are
already fetched internally to the memories, while the index is
incremented. This structure is optimal to increase sequencing
regularity and parallelism, whereas the full cycle time is avail-
able for memory accesses as well as for index incrementation,
allowing for slower low-power components. Register banks
are local to each MAC unit in order to minimize the MUX tree,
except for a shared register (Fig. 3c) that can be read by the
MAC Unit 1 (Fig. 3b) to sum the partial feature distances.

Figure 1: a) Reference grid; b) Matched grid;
c) Multiscale dilation and erosion.

Figure 2: General system architecture.

node
edge

c)

a) b)

Progressive
dilation
Progressive
erosion

...

...

Increasing size of the structuring element

RAM

Morphology
coprocessor

Master processor

B
us

ar
bi

tr
at

io
n

Shared Bus

Image
Sensor

Matching
coprocessor

Program
memoryRegisters

Program
memoryRegistersRegisters



3.3 Data flow

The AU is the only block of the coprocessor to access the ex-
ternal RAM (Fig. 3a,b), where the external address is specified
by the concatenation of the morphology level index, and the
node coordinates which are indirectly addressed by the node
index (Fig. 3a). During the rigid matching phase, the AU fetch-
es the morphological features from the external RAM, and
transfers them to the MAC units for feature reduction and eu-
clidean metric calculation, while handling the rigid graph
nodes displacement in the image window. The elastic graph
matching phase is processed according to Subsection 3.3.3.

3.3.1 Feature reduction

The feature vector of a node is loaded element by element from
the external RAM by incrementing the level index, and is sent
to the three MAC units in order to compute the three reduced
features in parallel. During each processing cycle, a feature
value is multiplied by a PCA/LDA coefficient with accumula-
tion of the result in the local register bank.

3.3.2 Euclidean metric

Only the MAC units are used for metric calculation. Reference
features loaded from local memories are subtracted from the
test features stored in the local registers (Fig 3c). The differ-
ences are then squared and accumulated in the shared registers.
The special MAC Unit 1 (Fig. 3b) finally adds up the values
from the shared registers to determine the feature distance. In
case this distance is lower, the "current node position" registers
are copied in parallel to the "best node position" registers.

3.3.3 Deformation penalty

During the elastic graph matching phase, the AU displaces the
nodes coordinates individually in their respective neighbor-
hood, and transfers the (x,y) values to MAC Units 2 and 3 to
calculate the deformation penalty in a supplementary step. The
deformation penalty is achieved by summing the squared dis-
tance variation of every node to its four connected neighboring
nodes when passing from the rigid to the elastic graph [1]. The
results are then transferred to MAC Unit 1 for final summation
and computation of the total deformation penalty.

3.4 Instruction set

Each instruction is 14 bits wide, with two fields controlling the
AU (6 bits) and the MAC units (7 bits), respectively, and an ex-
tra bit reserved for special loop instructions. The latter is used
to indicate that the next instructions until a corresponding spe-
cial branch instruction are to be repeated n times, or that the
next cycle is a branch cycle. This mechanism minimizes pipe-
line stalls, since only loop instructions create a one-cycle delay
when stacking the loop index and branch address.

Figure 3: a) Detail of the addressing unit; b) General organization of the matching coprocessor; c) Detail of a MAC unit (MAC UNIT 3).

MULT

registers
(8 × 16 b)

shared reg
(1 × 16 b)

0

ref index
1 × 6 b

pca index
1 × 11 b

MUX immediates

PCA/LDA
Memory

19 × 64 × 16 b

Reference
Memory
64 × 16 b

TO
 M

AC
 U

N
IT

 10

FR
O

M
AD

D
R
ES

SI
N

G
U

N
IT

a) c)

MUX

MUX MUX

MUX MUX

Y registers
(64 × 7 b)

X registers
(64 × 7 b)

Y registers
(64 × 7 b)

X registers
(64 × 7 b)

ADD

level index
(1 × 5 b)

mm

node index
(1 × 6 b)

MUX

immediates
(8 × 7 b)

address
x

TO MAC UNITS

TO
 E

XT
ER

N
AL

 M
EM

O
RY

yl

Best node position
registers

Current node
position registers

b)

data

mm

x / y

MUX

ADD
ADD

MUXMUX

CURRENT NODE
POSITION
REGISTERS

BEST NODE
POSITION
REGISTERS

NODE & 
LEVEL

INDEXES

MAC UNIT
1

MAC UNIT
2

MAC UNIT
3

LO
CA

L
R

EG
IS

TE
R

S

SH
A

RE
D

R
EG

IS
TE

R
S

ADDRESS
GENERATOR

TO
 E

XT
ER

N
AL

 M
EM

O
RY

AN
D

 M
AS

TE
R 

PR
O

CE
SS

O
RPCA MEM

REF MEM

PCA MEM

REF MEM

PCA MEM

REF MEM

CONTROL
UNIT

A
D

D
R
ES

SI
N

G
 U

N
IT

VE
C
TO

R
 M

AC
 U

N
IT

PROGRAM
MEMORY

INTERFACE
UNIT

SH
A

RE
D

R
EG

IS
TE

R
S

LO
CA

L
R

EG
IS

TE
R

S

LO
CA

L
R

EG
IS

TE
R

S

Addressing Unit related instruction field (6 bits wide)

ldnp Load pixel indirectly from
external memory to mm
register 1

incn Increment node index

movn Move current node position to
MAC units 2

setl Set level index 3

movb Move all best nodes to current setn Set node index 3

movbi Move best node to current
indirectly 2

inccx
inccy

Increment node position
indirectly 2,3

MAC Units related instruction field (7 bits wide)

MAC Units 1, 2, and 3

multv Vector multiplication 4 squarv Vector square 5,6

macv Vector multiply and accumu-
late 4

asquarv Vector square and accu-
mulate 5,6

subv Vector subtraction 7

MAC Units 2 and 3

subcv Vector subtraction 8 addcv Vector addition 8

MAC Unit 1 and special instructions

compd Compare distance and move
all current nodes to best
nodes if smaller

compdi Compare distance and
move indexed current
node to best if smaller 2

sets Set score 3 setp Set pca index 3

setr Set reference index 3 setm Set MAC mode 3,9

incr Increment reference index 3 incp Increment pca index 3

add Add shared registers

1 Level is automatically incremented.
2 Referenced by node index.
3 Limited number of immediate values.
4 One operand from PCA/LDA mem-

ory, the other from addressing unit.

5 Source and destination from regs.
6 Use upper or lower 8 bits.
7 One operand from ref. memory.
8 One operand from nodes position.
9 Mode: saturation, padding,

rational, upper/lower bits.

Table 1: Instruction set.



MAC instructions are SIMD-like since the same instruction
can be executed either on all 3 MAC units, or on 2, or on a sin-
gle one, depending on the instruction type (cf Table 1). Also,
the instruction set provides the architecture with a certain
reconfiguration flexibility.

3.5 Complexity estimation

The presented architecture was validated at register transfer
level using in-house tools (assembler, simulator) developed in
C++, which are at the same time used to estimate the complex-
ity of the algorithm by counting the total number of cycles ex-
ecuted for a single face verification. The results in Table 2
correspond to one face verification using 2552 rigid matching
iterations applied to a 128×128 pixels search window, and 10
elastic matching iterations, where all nodes are successively
displaced in a 11×11 pixels neighborhood during each elastic
matching iteration. Figures related to the VLSI circuit area and
to a refined power consumption estimation are foreseen for a
later stage of the work.

3.5.1 Simulation

The simulator contains a parser written in GNU Flex and Bison
[10], that reads the source code counting 557 program instruc-
tions, where the instruction set is used as a base for the Bison
grammar. Additionally, the coprocessor architecture is speci-
fied by instanciating a set of basic components described in
C++, jointly to the corresponding interconnections. The simu-
lation is then performed by dispatching every instruction to the
concerned components, followed by a bit-true and cycle-true
execution. The correctness of the program was checked this
way, collecting as well statistical data on resource usage
(memory, registers, multipliers, adders), and verifying the ab-
sence of any resources dependency problem.

3.5.2 Results

Following [5], the calculation of the 19 morphology levels on
the 128×128 window requires ca 2.3 million cycles. Adding
the 6.8 million cycles reported in Table 2, amounts to less than
10 million cycles to perform a complete face verification, ex-
cluding image acquisition and face detection. Assuming an op-
erating frequency of 10 MHz, the face verification is achieved
in less than 1 second, whereas timing constraints in the archi-
tecture can be strongly released, and the power consumption
drastically reduced, thanks to the low system clock frequency.

4. CONCLUSIONS
This article presents a dedicated low-power architecture for
face verification using elastic graph matching algorithms. The
system is subdivided into two specialized coprocessors, which
leads to an optimized computation and dataflow regularity. An
efficient algorithm decomposition is thus rendered possible,
allowing a low-power VLSI implementation by avoiding com-
putational redundancies through data reuse, and by carefully
exploiting the parallelism, so that the system clock frequency
can be lowered. A specific coprocessor for elastic graph
matching was then described jointly to its parametric instruc-
tion set. Finally, a complexity figure corresponding to a meas-
ure of the requested instruction cycles was given, showing that
a face verification can be performed in less than 1 second even
with low system clock frequencies.
Future work would consist in describing the architecture in
VHDL, and in synthesizing the coprocessor in a standard low-
power CMOS technology so as to achieve precise area and
power consumption estimations. Moreover, new architectures
for elastic graph matching are foreseen to be investigated, in-
cluding application to complementary biometric modalities.

ACKNOWLEDGEMENTS
This work was part of the SmartPix project supported by the
Swiss Center for Electronics and Microtechnology, Inc.
(CSEM), Neuchâtel and Zurich, Switzerland, under Grant
OIH3. Also, the authors would like to thank Dr. C. Kotropou-
los, Aristotle University of Thessaloniki, Greece, for his help-
ful comments on Morphological Elastic Graph Matching.

REFERENCES
[1] M. Lades, J. C. Vorbrüggen, J. Buhmann, J. Lange, C. von der

Malsburg, R. P. Würtz, and W. Konen, “Distortion Invariant Ob-
ject Recognition in the Dynamic Link Architecture”, IEEE
Trans. on Computers, Vol. 42, No. 3, March 1993, pp. 300-311.

[2] L. Wiskott, “Labeled Graphs and Dynamic Link Matching for
Face Recognition and Scene Analysis”, Ph.D. Thesis, University
of Bochum, Germany, July 1995.

[3] J. Zhang, Y. Yan and M. Lades, “Face Recognition: Eigenface,
Elastic Matching, and Neural Nets”, Proc. of the IEEE, Vol. 85,
No. 9, September 1997, pp. 1423-1435.

[4] C. Kotropoulos, A. Tefas, I. Pitas, “Frontal Face Authentication
Using Discriminating Grids with Morphological Feature Vec-
tors”, IEEE Trans. on Multimedia, Vol. 2, No. 1, 2000, pp. 14-26.

[5] P. Stadelmann, J.-L. Nagel, M. Ansorge and F. Pellandini, “A
Multiscale Morphological Coprocessor for Low-Power Face Au-
thentication”, submitted to EUSIPCO 2002, Toulouse, France.

[6] “AMBA Specification, rev. 2.0”, ARM Limited, United King-
dom, http://www.arm.com, May 1999.

[7] K. Sobottka and I. Pitas, “A Novel Method for Automatic Face
Segmentation, Facial Features Extraction and Tracking”, Signal
Processing: Image Communication, Vol. 12, No. 3, June 1998,
pp. 263-281.

[8] K. Fukunaga, “Introduction to Statistical Pattern Recognition”,
2nd edition, Academic Press Inc, San Diego, CA, USA, 1990.

[9] D. L. Swets and J. Weng, “Using Discriminant Eigenfeatures for
Image Retrieval”, IEEE Trans. on Pattern Analysis and Machine
Intelligence, Vol. 18, No. 8, August 1996, pp. 831-836.

[10] J. R. Levine, T. Mason, D. Brown, “Lex & Yacc”, 2nd edition,
O’Reilly & Associates Inc., Sebastopol, CA, USA, 1992.

Static program size (# of instructions) 557

rigid matching
elastic matching

49
508

Number of executed cycles 6’746’186

rigid matching
elastic matching

3’777’864
2’968’322

Number of executed operations

additions
multiplications
external loads

20’684’678
14’992’000
4’575’808

Table 2: Complexity figures of the graph matching coprocessor
corresponding to a complete face verification.


