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ABSTRACT

In this work we will show that the blind source sepa-
ration problem can be addressed using a linear algebra
approach. Making use of the definition of congruent
pencils and matrix block operations the problem is com-
pletely characterized. We also show that it is possible
to have an on-line implementation of the method.

1 Introduction

The mathematical model for the blind source separation
problem is y(t) = As(t),where A is the mixing matrix,
y(t) and s(t) are vectors of mixed and source signals at
time ¢, respectively. Generally, it is assumed that each
measured (or mixed) signal is an instantaneous mixture
of the source signals. The extraction must be carried on
without knowing the structure of the linear combination
(the mixing matrix) and the source signals.

The problem has been addressed as a generalized
eigendecomposition problem(GED). This solution com-
prises the simultaneous diagonalization of a matrix
pencil (R, Rzs) computed in the mixed signals.
These matrices are calculated with different strategies:
Souloumiac [1]consider two segments of signals with dis-
tinct energy; Molgedey [2] and Chang [3]computes time-
delayed correlation matrices; Tomé [4] and [5]consider
filtered versions of the mixed signals. Using this method
the separation matrix, i.e. the matrix that simultane-
ous diagonalizes the pencil, is the transpose of eigen-
vector matrix of the generalized eigendecomposition of
pencil. Nevertheless, most of the solutions, for blind
source separation, comprise two steps[6], [7]. In the first
step, called the whitening (sphering) phase, the mea-
sured data is linearly transformed such that the correla-
tion matrix of the output vector equals the identity ma-
trix. This linear transformation is usually computed us-
ing the standard eigendecomposition of the mixed data
correlation matrix. During this phase the dimension-
ality of the measured vector is also reduced to the di-
mension of the source vector. After that, the separation
matrix, between the whitening data and the output, is
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an orthogonal matrix which is computed applying differ-
ent strategies. In algorithms like AMUSE and EFOBI
[6] a standard eigendecomposition is performed in a ma-
trix derived from fourth-order cumulant or time-delayed
correlation definitions. The global separation matrix, or
an estimate of the inverse of A, is the product of the two
matrices computed on the two phases of the method.

In this work, we will formulate the GED method to
blind source separation using a linear algebra approach
based on the definition of congruent pencils [8]. The use
of congruent pencil definition and of block matrix opera-
tions constitute a very simple formulization of the GED
approach to the blind source separation. We also review
methods that perform the eigendecomposition of a ma-
trix pencil based on two consecutive standard eigende-
compositions. We will introduce an iterative algorithm
to compute the GED of a symmetric matrix pencil. The
algorithm is based on the power method and deflation
techniques, to perform standard eigendecompositions,
and on the use of the spectral factorization of a matrix
to approximate a linear transformation. This method
can be an on-line algorithm for blind source separation
if the matrix pencil can be computed iteratively.

2 The Generalized Eigendecomposition Ap-
proach

The generalized eigendecomposition formulation of the
blind source separation problem is based on the relation
of two pencils: the source matrix pencil (Rsi, Rs2)
and the mixed pencil (Rz1, Rz2). The two pencils are
called congruent pencils [8] if there exists an invertible
matrix A, such that

Rzl = ARSlAT and Rzg = ARSQAT (1)

In the blind source separation problem the matrix A
is the instantaneous mixing matrix and can be an mxn
matrix, i.e., the number of mixed signals (m) is not equal
the number of source signals (n). In that case we will
show that the properties which characterize congruent
pencils are also applied if m > n. Therefore, the in-
verse (or the pseudo-inverse) of the mixing matrix can
be estimated, using the mixed pencil, if the eigenvector



matrix of the source pencil is diagonal. The following
propositions constitute the required prove.

Proposition 1 : Congruent pencils have the same
etgenvalues.

The eigenvalues of a pencil are the roots of the char-
acteristic polynomial, x(X),

X()\) = det(Rz1 — )\Rzg) =0 (2)
If A is an invertible matrix, then

det(Rz1 — ARy2) = det(A) det(Rs1 — ARs2) det(AT),

which as the same roots as characteristic polynomial of
the source matrix pencil

X(\) = det(Ry1 — ARs2) = 0 (3)

When A is a rectangular matrix (m > n), if AT Aisan
invertible matrix, the congruent pencil (AT AR, AT A,
AT AR, AT A) has also the same eigenvalues, and so the
mixed pencil (with m x m matrices) has also n eigen-
values equal to the eigenvalues of the source pencil.

Proposition 2 : The eigenvectors of the source pencil
are related with the eigenvectors of the mized pencil

The generalized eigendecomposition statement of the
mixed pencil
R.’EZE = RzlED (4)

where FE is the eigenvector matrix and it will be an
unique matrix (with the columns normalized to unity
length) if the diagonal matrix D has distinct eigenval-
ues, \;. Otherwise the eigenvectors which correspond to
the same eigenvalue might be substituted by their lin-
ear combinations without affecting the previous equal-
ity. So, supposing that D has distinct values in its di-
agonal, rewriting the equation (4)

AR ATE = AR, ATED (5)

if A is an invertible matrix, we can multiply both sides
of the equality by A~! and changing

E,=ATE (6)

The new equality, Rs1 Es = RsoFE4D, is the eigendecom-
position of the source pencil and E is its eigenvector
matrix. The normalized eigenvectors for a particular
eigenvalue are related by es; = aATe where « is a con-
stant that normalizes, to unity the length, the eigenvec-
tors

In what concerns the blind source separation problem
the eigenvector matrix E will be an approximation to
inverse of mixing matrix, if the F is the identity matrix
(or a permutation). This is a fact when the matrix pencil
of the source signals are both diagonal.

When the mixing matrix is a m X n (m > n) the
equation (5) might written using block matrix notation.
Considering A and F divided into two blocks: A into
Ap, nxn,and Ar,(m—n) xn; E into Eg,n x m and
Er,(m — n) x m. Therefore, performing matrix block
operations the equation (5) can be written as

AgRs1® = AgR2®D )
ALR1® = ALRs2®D

where ® = AL, Eg + ALEp = ATE is n X m matrix.
The first equation shows that this case also resumes the
relation among congruent pencils. @ is a matrix that
also represents the eigenvector matrix of the source ma-
trix pencil having (m—n) columns of zeroes paired with
the eigenvalues in D that does not belong to eigenvalue
decomposition of (Rs1, Rs2). Using this direct approach
to solve the blind source separation, it is possible to find
out the number of sources because after the separation
(m — n) zero amplitude signals are obtained. Neverthe-
less, the solution is also found using a subset of mixed
signals (n signals) to compute the mixed matrix pencil.

In resume, the GED approach to Blind Source Sepa-
ration is feasible if the congruent pencils have distinct
eigenvalues and the eigenvector matrix of the source
pencil is the identity matrix (or a permutation). Then,
the source matrix pencil should be diagonal with dis-
tinct relations between its diagonal elements. In a prac-
tical situation, the diagonal constraint might be a prob-
lem because working with estimates, we may have very
small values out of the main diagonal which prevent the
eigenvector matrix to be an identity.

2.1 The eigendecomposition of symmetric pen-
cils
There are several ways to compute the eigenvalues or
the eigenvectors of a matrix pencil, if at least one of the
matrices a symmetric positive definite pencil [8]. A very
common approach is to reduce the GED statement to
the standard form, i.e. , to the eigenvalue decomposi-
tion problem. Consider the problem of computing the
eigenvalues and the eigenvectors of the pencil (Ry1, Ry2)

RpoE = Ry ED (8)

The reduction of the previous equation to the standard
foom CZ = ZD, is achieved by solving the eigende-
composition of the matrix R;;. Then, if the matrix is
positive definite, Ry = SAST = SA/28TSAY/28T —
WW , and considering Z = W E,we can write equation
(8) as
W 'RW™'Z =2ZD (9)
The previous equation is an eigendecomposition state-
ment of a real symmetric matrix ¢ = W 1R, W1
if Rgo is also symmetric positive definite. The trans-
formation matrix (W~! = SA~1/28T) should be com-
puted with the non-zero eigenvalues and the correspond-
ing eigenvectors. With the eigendecomposition solu-
tion of C, the eigenvalues of pencil (8)are also available,



while the eigenvectors are computed solving the equa-
tion E =W~1Z.

Usually, the matrix R, is decomposed using Cholesky
approach [8]. A similar decomposition, R;; =
SAY2AY28T s used in algorithms like AMUSE and
EFOBI [6] to achieve the so called data whitening, but
instead of performing a linear transformation on a ma-
trix, the transformation (A~'/28T) is used on the raw
data. In AMUSE and EFOBI algorithms, the second
step is a standard eigendecomposition of a matrix which
can also be written as a product of matrices very similar
to those found in equations (9) and (1). But using the
proposed decomposition, the transformation matrix can
be written as a spectral factorization

_ 1
W L= Z ﬁSiSiT (10)

then an iterative procedure can be implemented using
power method and deflation techniques to achieve the
eigendecomposition of both matrices. Therefore, as the
transformation matrix can be computed iteratively, i.e.,
using a criterion to include a pair (s;,8;) of the first
eigendecomposition into the summation of equation (10)
Then, after having an estimative to the transformation
matrix, the eigendecomposition of C can start. The
mean square error eiTei, where e; = Rz18; — 8;8;, was
the criterion used[9].

2.2 Computing the matrix pencil

There are different suggestions to compute the mixed
matrix pencil having the mixed signals. Let X be a
m X N matrix containing a segment with N samples of
each of m measured signals. The correlation matrix for
X, am X m matrix, is calculated as

1
Ry = NXXT (11)

Let Xf be a matrix m x N having in each raw a
filtered version of each raw in X. Considering that a FIR
(finite impulse response) of length M (M << N) was
used, the convolution operation of the linear filtering is
expressed as X f = XHT, where H is a N x N Toeplitz
matrix with h(n)—the nth sample of impulse response-
on the nth diagonal. The correlation matrix of X f is
m X m defined by

1
Ry = NXHTHXT (12)

Considering that the mixed signals are related with
the source signals, i.e. , X = AS, the pencil (R;1, Rz2)
has a congruent pencil in source domain as described in
equation (1).

In the on-line implementation the correlation matrices
are computed iteratively, assuming that a new sample
of mixed signals and filtered signals are available on it-
eration 4. For instance, the correlation matrix of the the

mixed signals in iteration ¢ is
Re1(1) = (1=1/i)Re1 (i —4)+(1/9) X (:,9) X (:,9)T, (13)

and the correlation of the filtered mixed signal is com-
puted in a similar way, substituting the vector X (:, %) by
the vector of filtered signals.

3 Results

The experiments reported here, involve mixtures of four
sound waves, resampled at 8kHz, with 50000 samples.
Different mixing matrices and different filters were used.
The matrix pencil is updated for every sample and a gen-
eralized eigendecomposition is performed using power
method, deflation techniques and the transformation
matrix described in equation (10) as described in [9].
Nevertheless, the eigendecomposition parameters are
stored with a lower rate, i.e., in intervals of 500 sam-
ples. The figure (1) shows an example of the evolution
of the 100 stored eigenvalues estimated using a matrix
pencil computed at the input and at the output of a FIR
with coefficients. The mixed signals are separated us-
ing the corresponding 100 eigenvector matrices and the
correlation coefficients, between sources and recovered
signals, are calculated.

In every experiment, taking apart the initial process
of convergence, the best results were achieved with the
eigenvector matrix which correspond to the most accen-
tuated eigenvalue spread for that particular simulation.
The dashed box in the example of figure(1) indicates the
best zone to pick up the separation parameters. During
this interval it is also verified that the source signals are
recovered at the same position in the vector of separated
signals. Because the estimates of the eigenvalues are
achieved by descending order of magnitude due to the
application of power method and deflation techniques.
The table (1) presents the correlation coefficients using
the eigenvector matrix estimated after 35000 samples
of the data. There is a maximum (approximately one)
in each raw/column and all the others coefficients are
approximately zero. Near the end of the segment the
source signals, with exception of source 1, are not com-
pletely separated and the predominate source signal is
not always at the same position in the vector of sepa-
rated signals. The table (2) shows the results using the
estimated parameters near the end of the data segment
(with 45500 samples) where the maximum values of the
correlation coefficients are lower than the ones in table
(1), and there are also correlation of coefficients on the
same raw/column that are significant. In this case, lis-
tening the separated signal 3, the source 4 predominates
but the source 2 is also audible.

4 Conclusions

This work reports an alternative formalization for
the generalized eigendecomposition approach to blind
source separation. Using linear algebra concepts it was
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Figure 1: Evolution of the eigenvalues during the itera-
tive matrix pencil eigendecomposition

source 1 | source 2 | source 3 | source 4
separated 1 | 0.999 0.003 0.007 0.005
separated 2 | 0.000 0.014 0.999 0.005
separated 3 | 0.006 0.998 0.018 0.052
separated 4 | 0.003 0.057 0.002 0.998

Table 1: Correlation coefficients between sources and
separated signals using the separation matrix estimated
after 35000 samples.

possible to find an on-line solution to the problem in-
stead of using an approach based on separated steps like
AMUSE and EFOBI. Furthermore, the matrix pencil is
computed at the input and at the output of a simple
linear filter.

The method works better when the eigenvalues
are distinct and spread as it is also suggested by
Souloumiac[1]. But the proposed methodology also sug-
gests that the decision, in what concerns parameter val-
idation, can be taken on-line. This aspect should be
further exploited in order to find the best methodology
to apply the criteria. Another aspect to study is the
choice of the linear filter which naturally determines the
numerical values of the eigenvalues, but it is not clear
what should be the design constraints to achieve the
best result.
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