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1  Intr oduction.

LORAN-C radionavigation system is based on the
evaluation of propagation delays between terrestrial stations
and receiver. Due to the propagation effects, only ground
wave is reliable. For distances greater than , the
groundwave is so attenuated (about ) that classical
summation-based algorithms are not efficient as there is no
way to set off the receiver movement. To this end, we present
here an application of non-linear dynamic filtering using the
particle technique originally introduced in [1], and patented
in [2], which is practicable, thanks to the model of skywave.

2  Preprocessing and sampling.

Recall that the LORAN-C signal is defined as a repeated
sequence of impulsive modulations:

(2.1)

with  and .
Although main processing has to be achieved under non

linear numerical form, analog linear preprocessing is
required before sampling. This preprocessing must mainly
satisfy the three following goals:

• Its output must produce the best signal to noise ratio.
• The reception additive white noise must remain white

after filtering and sampling. This is required to apply non-
linear optimal filtering theory in standard form.

• After sampling, the whole useful information must be
preserved.

2.1  Matched filter.

Concerning the first point, the classical solution is to use
the linear matched filter which is devoted to maximize the
SNR. Recall that its impulse response is defined by

. Besides the fact that such a filter is
unrealizable, the main drawback of this approach is that noise
is no longer white after filtering, which is in contradiction
with the second point. As the spectrum of the filtered noise is
the same as that of the signal, the autocorrelation of the noise
is almost -periodic and is defined by:

(2.2)

It is clear that no sampling frequency can make samples to be
uncorrelated.

2.2  Bandpass filter.

As the main power of the LORAN-C signal is
concentrated in the band , an alternative so-
lution consists in using a bandpass filter centered on

 with  as bandwidth. The loss
generated by this filter, compared to the matched filter, may
be quantified as follows. Let  be the Fourier transform
of the signal  defined over the interval . The
energies of the filtered signal (respectively of the noise),
using the matched filter, may be computed as:

, (2.3)

where  is the power spectral density of the noies.
When using a bandpass filter, these energy are:

, (2.4)

The loss involved by using the bandpass filter is then:

(2.5)

In our case, this loss may be evaluated as . The
autocorrelation of the filtered white noise is defined by:

(2.6)

The sampling period  makes sure that the
samples are uncorrelated as these points lies on the zeros of
the autocorrelation function.

2.3  Demodulation by under-sampling.

In order to achieve the third point, one usually uses a
bandpass filter with a cutoff frequency  corresponding to
the greatest frequency of the signal. The sampling frequency
must then be at least equal to  in agreement to the
Shannon theorem. Note that there is an other way to achieve
this point in our case, that is to use a sampling frequency

. With such a procedure, the aliasing of the
spectrum preserves the original signal. Note that in the band

, the spectra coincide. One then realizes the
demodulation of the signal at the frequency  as it is
suggested in [3]. Moreover, this sampling frequency pre-
serves the whiteness of the sampled noise due to the term

 in (2.6).

2.4   Quadrature sampling.

Because the sampled signal power is not proportional to
the power of the continuous signal, as it depends on the posi-
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tion of the samples, it is necessary to realize an other sam-
pling in quadrature, that is delayed of the quarter of the
carrier period ( ). With such a procedure, ones makes
sure that the sum of the power of each channel is equal to the
power of the continuous signal. Note that this technique is
nearly equivalent to a classical two channel demodulation.

Due to the term  in (2.6), it is clear that the
samples of the filtered white noise are uncorrelated as the
autocorrelation is zero for all  and for all

, that is for all samples separated
by .

3  Modelling.

3.1  Carrier dynamics.

The carrier movement is measured through the course
and speed data. These measures are of course associated to
an error that may be evaluated to about % for classical
systems. In order to derive a model which takes into account
the time constant of the sensors, we adopt here as a model of
the observers a first order linear system. Let  and  be
the errors of speed and course respectively. The dynamic
evolution of these errors is defined by:

(3.1)

where  end  stand for the standard deviation of the error
of speed and course respectively,  is a time constant, and
where  and  are standard Wiener processes.

After sampling at the rate , the evolutions of the errors
may be represented as follows:

(3.2)

where  and  are discrete normalized white noises. The
evolution of the position of the carrier is then defined by:

(3.3)

where  and  stand for the speed and course measured.

3.2  Observation signal.

The signal received by the antenna is the sum of the
groundwave and the skywave. Theoretically, the skywave is
a copy of the ground wave with a different amplitude and a
time delayed. A natural way of modeling such a signal would
be to introduce a new state variable for each station through
the time delay of the skywave. Unfortunately, such a model
would lead to an independent particle variable for each sta-
tion which is not tractable in practice due to prohibiting state
space dimension in such a case. Moreover, the skywave
phenomenon is not really mastered and the possible
deformation of the wave would not be taken in account with
such a model. Also, the possible superposition of several
skywaves is often considered [4]. For all these reasons, we
adopt here a model of the skywave as the superposition a lar-
ge number of copies of the groundwave with fixed time
delays but with unknown amplitudes:

(3.4)

where:

• : number of stations considered.
• : amplitude of the ground wave (unknown).
• : signal of the station .
• : distance between emitter and receiver (unknown).
• : propagation speed of the wave.
• : amplitude of the skywaves (unknown).
• : delay of the k-th skywave (fixed).
• : additive white noise.

4  Particle filtering .

4.1  Principle.

In the general case, the problem of non-linear filtering is
to compute the density of the state conditionally to the
observation trajectory , that is . It is
well known that the optimal filter is not computable in finite
dimension in the general case, except for the gaussian-linear
case which leads to the so called Kalman filter. The progress
of computational power makes possible the development of
particule based filtering algorithms. The aim of this techni-
que is to construct an approximation of the probability
density with a discrete measure as:

(4.1)

where  stands for the Dirac measure on the point
(called particle) and  is the level of this particle.
Realization of the particle trajectories  is achieved via
simulation of the state space model. The computation of
is achieved through Bayes formula from the observation
equation. More precisely, let:

(4.2)

be the state space model where is white noise of known
distribution (not necessary gaussian). A trajectory of  is
obtain by simulation of the model, that is by an independent
drawing of  according to its distribution. Then:

(4.3)

This Monte Carlo procedure leads to an approximation of
the a priori distribution of the state, that is:

(4.4)

If  stands for the observation process, the Bayes rule leads
to:

(4.5)

If one replace the approximation of the a priori density in this
formula, one may write the marginal probability ,
integrating over :

(4.6)

which is clearly of the form of (4.1).
The minimum variance estimator is then computed with:

(4.7)
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4.2  Conditionally gaussian case.

The number of particles may be significantly reduced by
the exploitation of some linearities of the model as it will
appear now.

Suppose that the state space may be separated in two sets
as:

(4.8)

where  and  are gaussian white noises. It is clear that for
all  known, the model of  is linear-gaussian. As a
consequence, the optimal estimation of may be achieve
using the Kalman filter. Let  be the kalman predictor
of  computed for the particle . In such a case, the
innovation process  is a gaussian
white noise of known variance:

(4.9)

where  stands for the variance of the gaussian white noise
 and where  is the prediction variance error of the

Kalman filter, that is:

(4.10)

The probability of the observation trajectory may now be
written:

(4.11)

The likelihood takes then the following recursive form:

(4.12)

The main advantage of this approach is to reduce the di-
mension of the state to be estimated by a particle algorithm,
and consequently to reduce the number of particle required.

4.3  Regularization.

Unfortunately, one may derive that such a procedure
doesn’t make sure the uniform convergence of the discrete
approximation as the number of particles would have to
grow with time which is inconsistent with a real time filtering
application.

However, a resampling techniques may be used to make
sure the uniform convergence of the algorithm. The idea is
that after some filtering time, some particles are no more
relevant to represent the probability density as their level are
no more significant. When such a situation occurs, it is
necessary to resample the distribution representation in view
to emphasize the area of great level. To achieve this goal, it
suffices to realize periodically a draw of the  particles
according to the probability obtained at this step. As a
consequence, some particles will die as some others will
birth in the high level area.

5  Application to LORAN-C signal.

5.1  Distinction between groundwave and skywave.

The main difficulty in LORAN-C filtering is to
distinguish within the ground wave and skywave. This is
more and more crucial when the distance between station and
receiver is over  because the ratio within skywave

and groundwave may reach . A classical error in such a
situation is to catch the skywave in place of the groundwave.
To avoid such a pitfall, one has to take into account that the
groundwave must have an amplitude which is not null and,
furthermore, limited to an interval which depends on the
distance station/receiver. The values to assign to this interval
may be computed from [5].

Suppose that a parameter is assigned to lay on an
interval . Suppose that this parameter is observed
trough a gaussian process of the following form:

(5.1)

where  is a gaussian white noise of variance . One then
may derive [6] that:

(5.2)

where  is the kalman filter of the parameter and where
 is again a normalization term.  stands for the

covariance of the kalman estimator. Furthermore, the
likelihood of  may be written as follows:

(5.3)

where the normalization terms are defined by:

(5.4)

and  is the error function.
This property will be applied to the groundwave

amplitude estimation to improve the filtering efficiency in
term of rejection of the skywave.

5.2  Algorithm.

The model (3.2)-(3.3)-(3.4) is clearly of the form (4.8).
The nonlinear space set is composed with the four states

 as the linear space set is composed of the
 states .

The algorithm is structured as follows:
1.  Initialization.
Drawing of  particles according to the initial

distribution. We adopt here to realize a uniform draw over a
disk whose ray represents the initial incertitude on the posi-
tion.

2. Particle evolution.
 Drawing  times independently of the noises and
. Then use (3.2) and (3.3) to compute the evolution of the

particle net.
3. Kalman filtering.
 For each particles , computation of the kalman filters

conditioned in view to estimate the amplitudes of the
groundwave and skywave jointly. Let:

(5.5)

the observation vector, and:

(5.6)
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the linear state space. The observation signal is then defined
by:

(5.7)

The Kalman filter of  associated to the particle and the
station  is then computed according to:

(5.8)

where  is the classical Kalman gain.
4. Level computation.
For each particle , if  stands for the number of station

received at time , one computes the standard non-normal-
ized likelihood.

(5.9)
where  is the covariance of the Kalman predictor. The
levels are then computed by:

(5.10)

where  is the amplitude interval of the groundwave
for the station  and  is the amplitude prediction of the
groundwave of the station .

5.  Estimation.
The carrier position estimation is computed by:

, (5.11)

and the standard deviations associated by:

, (5.12)

6. Resampling.
When the estimated distribution is degenerated, that is

when the number of particle having a level under a fixed ratio
of , is greater than a treshold, the particles are resampled
according to the current estimated distribution.

5.3  Simulation results.

The algorithm have been simulated for several SNR in
view to evaluate the limit of detection efficiency of the parti-
cle filtering. The initial uncertainty have been fixed in a disk
of ray . One has simulated stations with a GRI equal
to . The amplitude interval was fixed to . For
each stations, the amplitude of the skywave was ,
and  over the groundwave respectively. The delay was
fixed to . The interval of research of the skywave delays
was fixed to  with  subdivisions. In all
theses simulations, the clock of the receiver is supposed per-
fectly synchronized with those of the emitter, performing cir-
cular positioning.

On figure 1 and figure 2, one displays the longitude and
latitude error associated to their standard deviations for

, which is a typical value for distance of
 for standard stations. It appears that the algorithm

converge after about .

The figure 3 represent the evolution of the distribution of
the longitude. It appears clearly here the multi-modes of the
densities corresponding to the wavelenght of the signal, that
is  corresponding to .

 figure 1: Longitude estimation - SNR = -30 dB

 figure 2: Latitude estimation - SNR = -30 dB

 figure 3: Evolution of distribution of longitude - SNR = - 30dB
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