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Abstract: The aim of this paper is to present the application of particle filtering to LORANi@atian. After consideration

of preprocessing treatment, one desi a complete modeling of

the global problem. The model of thevedlosdve is particu-

larly adapted to the particle corteand allavs to reduce the number of particles required. Simulation resultsvare gi

1 Introduction.

LORAN-C radionaigation system is based on the
evaluation of propagtion delays between terrestrial stations
and recaier. Due to the propagion efects, only ground
wave is reliable. Br distances greater tha2D0Gkm, the
groundvave is so attenuated (abou80dB) that classical
summation-based algorithms are ndic&nt as there is no
way to set dfthe recerer mosement. D this end, we present
here an application of non-linear dynamic filtering using the
particle technique originally introduced in [1], and patented
in [2], which is practicable, thanks to the model ofvghve.

2 Preprocessing and sampling

Recall that the LORAN-C signal is defined as a repeated
sequence of impulg modulations:

—2(t—t
s(t) = Etlpgzexpg (tp p)gsin(znfot)
with t, = 65ps and f, = 100kHz.

Although main processing has to be aghéunder non
linear numerical form, analog linear preprocessing is
required before sampling. This preprocessing must mainly
satisfy the three foll@ing goals:

« Its output must produce the best signal to noise ratio.

e The reception addite white noise must remain white
after filtering and sampling. This is required to apply non-
linear optimal filtering theory in standard form.

« After sampling, the whole useful information must be
presered.

2.1)

2.1 Matched filter.

Concerning the first point, the classical solution is to use
the linear matched filter which isd#ed to maximize the
SNR. Recall that its impulse response is defined by
h(t) = s(-t). Besides the att that such a filter is
unrealizable, the main dspack of this approach is that noise
is no longer white after filtering, which is in contradiction
with the second point. As the spectrum of the filtered noise is
the same as that of the signal, the autocorrelation of the noise
is almostf ;-periodic and is defined by:
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It is clear that no sampling frequgnzan mak samples to be
uncorrelated.

cos(2mf 41)d1(2.2)

2.2 Bandpass filter

As the main pwer of the LORAN-C signal is
concentrated in the barj@dbkHz 125kHZ] , an alternatie so-
lution consists in using a bandpass filter centered on
f, = 100kHz with Af = 50kHz as bandwidth. The loss
generated by this filtecompared to the matched filtenay
be quantified as folles. Let S(f) be the Burier transform
of the signals(t) defined wer the interal [0, 65us] . The
enegies of the filtered signal (respegty of the noise),
using the matched filtemay be computed as:

EM = 1£|S(f)|4df ,EM = GZJ;IS(f)Ide (2.3)
whereo? is the paver spectral density of the noies.
When using a bandpass filtdtese engy are:
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EE= | IS(f)°df , EB = o?Af (2.4)
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The loss imolved by using the bandpass filter is then:
(Eé"I EE’)/(EEEQ") (2.5)
In our case, this loss may bgakiated as7dB. The
autocorrelation of the filtered white noise is defined by:
sin(TAf {)
—Arr (2.6)
The sampling periodAt = 20us makes sure that the
samples are uncorrelated as these points lies on the zeros of
the autocorrelation function.

fo

R(t) = 202Af cos(2mf 5t)

2.3 Demodulation by undefrsampling.

In order to achiee the third point, one usually uses a
bandpass filter with a cufdrequeny f,, corresponding to
the greatest frequeypof the signal. The sampling frequgnc
must then be at least equal 2d,, in agreement to the
Shannon theorem. Note that there is an otter tw achiee
this point in our case, that is to use a sampling frequenc
o = B0kHz. With such a procedure, the aliasing of the
spectrum presees the original signal. Note that in the band
[75kHZz125kHZ] , the spectra coincide. One then realizes the
demodulation of the signal at the frequent, as it is
suggested in [3]. Moreer, this sampling frequegcpre-
senes the whiteness of the sampled noise due to the term
sin(mAf Y in (2.6).

2.4 Quadrature sampling

Because the sampled signalyw is not proportional to
the paver of the continuous signal, as it depends on the posi-
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tion of the samples, it is necessary to realize an other sam-
pling in quadrature, that is delayed of the quarter of the
carrier period 2, 5us). With such a procedure, ones reak
sure that the sum of thewer of each channel is equal to the
power of the continuous signal. Note that this technique is
nearly equialent to a classical tiwchannel demodulation.

Due to the termcos(2nif5t) in (2.6), it is clear that the
samples of the filtered white noise are uncorrelated as the
autocorrelation is zero for all= k/Af, kO N and for all
t = k/fy+1/(4fy), OkON, that is for all samples separated
by (20k + 2,5)ps.

3 Modelling.

3.1 Carrier dynamics.

The carrier meement is measured through the course
and speed data. These measures are of course associated
an error that may bevaluated to aboul0% for classical
systems. In order to dge a model which tads into account

* N : number of stations considered.

af: amplitude of the groundave (unknavn).

sk(t) : signal of the statiok.

Df: distance between emitter and reeei(unknevn).
c: propagtion speed of theave.

{ Ak i}JM: 1 - amplitude of the skwvaves (unknan).

1y ;- delay of the k-th siwave (fixed).

v, - additve white noise.

4 Particle filtering .

4.1 Principle.

In the general case, the problem of non-linear filtering is
to compute the density of the state conditionally to the
obsenration trajectoryy§ = {y, ..., y;} , that iSp(xt|yg) Jtis
well known that the optimal filter is not computable in finite
timension in the general casgcept for the gussian-linear
case which leads to the so called Kalman fill&e progress
of computational pwer males possible the gelopment of

the time constant of the sensors, we adopt here as a model oparticule based filtering algorithms. The aim of this techni-

the obserers a first order linear system. L& andok, be
the errors of speed and course respelsti The dynamic
evolution of these errors is defined by:

d(dv,) = —adv,dt+o,dB,

d(8k,) = —adkdt + o, dp,’
whereo, endo, stand for the standardwdation of the error
of speed and course respeely, a is a time constant, and
wherep, andp, are standard Wner processes.

After sampling at the ratat , the @olutions of the errors

may be represented as follex

3V, p = (1—alt)dv, + o,/At w,

(3.1)

(3.2)
3Ky, o = (1—alt)dk, + o, /At W,

wherew, andw,’ are discrete normalized white noises. The
evolution of the position of the carrier is then defined by:
Xepar = X+ (Vg +0vy)sin(k; + 8ky)
Yernr = Yot (v + Ovp)cos(k; + Oky)
wherev, andk; stand for the speed and course measured.

(3.3)

3.2 Obsevwation signal.

The signal receed by the antenna is the sum of the
groundvave and the gkwvave. Theoreticallythe skwave is
a copy of the ground \ave with a diferent amplitude and a
time delayed. A naturalay of modeling such a signabwid
be to introduce a mestate ariable for each station through
the time delay of the gkave. Unfortunatelysuch a model
would lead to an independent partickriable for each sta-
tion which is not tractable in practice due to prohibiting state
space dimension in such a case. Muegothe skwave
phenomenon is not really mastered and the possible
deformation of the ave would not be ta&n in account with
such a model. Also, the possible superposition vérsé
skywaves is often considered [4]oFall these reasons, we
adopt here a model of theyskave as the superposition a lar-
ge number of copies of the grourm with fixed time
delays it with unknavn amplitudes:

Ng Ns ™ )
z =% a‘sk(t—Dk/c) + >y Af”sk(t—Df/c—rij)(Bxﬁl)
k=1 k=1j=1
where:

gue is to construct an approximation of the probability
density with a discrete measure as:
N
POX|Y0) O S Pid(%)
i=1
where Bx{(xt) stands for the Dirac measure on the pajnt
(called particle) andp] is the leel of this particle.
Realization of the particle trajectorie¢ is achiged via
simulation of the state space model. The computatiqsj of
is achiwed through Bayes formula from the obseion
equation. More preciseliet:
Xeant = T (X0 W) (4.2)

be the state space model whereis white noise of knon
distribution (not necessaryagssian). A trajectory ofi is
obtain by simulation of the model, that is by an independent
drawing of wi according to its distriltion. Then:

Xoa = FOxdw) (4.3)
This Monte Carlo procedure leads to an approximation of
the a priori distribtion of the state, that is:

(4.1)

N
p(x,) IZI% 3 8,(x) (4.4)
i=1

If y, stands for the obseation process, the Bayes rule leads

to:

P(Y§|x6) P(xH)
P(yb)

If one replace the approximation of the a priori density in this

formula, one may write the nginal probability p(xt|y,5),
integrating over { x, ..., X, _1} :

P(xb|vh) = (4.5)

N
23 POB| ()15, (%)
i=1
N

1 .
S pOyh| b))
i=1
which is clearly of the form of (4.1).
The minimum wariance estimator is then computed with:

N

% = ixi

%= 5 X
i=1

P(x|¥o) O (4.6)

(4.7)



4.2 Conditionally gaussian case.

The number of particles may be significantly reduced by

the ploitation of some linearities of the model as it will
appear nw.

Suppose that the state space may be separated setsy
as:
(X wy)

Xevat =
B4 ar = F(X)6; + G(x)w,’
Yi = H(X)6; +v;

wherew,” andy, are gqussian white noises. Itis clear that for
all x, known, the model of6, is lineargaussian. As a
consequence, the optimal estimationepfmay be achie
using the Kalman filteri_et éhm\t be the kalman predictor
of 6, computed for the particlei. In such a case, the
innovation procesg?tiwm = ¥, —H()8{+ e is @ gussian
white noise of knan variance:

(4.8)

and groundwave may react20dB . A classical error in such a
situation is to catch the glave in place of the groundave.
To avoid such a pitdll, one has to takinto account that the
groundvave must hae an amplitude which is not null and,
furthermore, limited to an inteaV which depends on the
distance station/reaegr. The \alues to assign to this intev
may be computed from [5].

Suppose that a parameteris assigned to lay on an
internval D = [b, c] . Suppose that this parameter is obsérv
trough a gussian process of the folling form:

y; = ha+y, (5.1)
wherev, is a gussian white noise ofianceR. One then
may dewe [6] that:

—1(a—a1)TP(1(a—ao
[x O @]

wherea, is the kalman filter of the parameterand where
a, Is a@in a normalization termpP, stands for the

p(alyy) = (5.2)

- Lo T
21 = HO)PL ageH () +R (4.9) covariance of the kalman estimatoFurthermore, the
whereR stands for theariance of the gussian white noise likelihood ofy§ may be written as folles:
v, and wherePy, . is the prediction ariance error of the .
Kalman filter that is: 1 - -1 ~
’ d N o VO = 5 Y (e=hed_)T(hP,_ihT +R) (v, =hea )
Pt|+At\t = E[(B4p =B+ ) By p—Otwae) 1 (4.10) r=0 (5.3)
Th_e probability of the obseation trajectory may ne be + Log%%— (t + 1)Log( /(ZT[)mR)
written: 0
VA 10k =H ) Bl - p)* where the normalization terms are defined by:
1 2 Zint
PP = [1 === (4.11)
D
A/(2”)|zl'<m a, = B—I:I—e fB—ED,/ 2m)"|P| (5.4)
The Iikelihood tales then the follving recursie form: D OJ|PJ 0

L 100y — H(Xt)et\t At)

Vi = Viln _QE 5l
The main adantage of this approach is to reduce the di-

mension of the state to be estimated by a particle algorithm,

and consequently to reduce the number of particle required.

anderf is the error function.

This property will be applied to the grounae
amplitude estimation to impve the filtering diciengy in
term of rejection of the skvave.

L
+ Ioan(Zt'% (4.12)

5.2 Algorithm.

The model (3.2)-(3.3)-(3.4) is clearly of the form (4.8).
The nonlinear space set is composed with the four states
{[%, Y Ov,, k] T} as the linear space set is composed of the
Ny(M +1) states{ak Akl k=1..Ng (j =1...M)}.

The algorithm is structured as fole:

1. Initialization.

Drawing of N particles according to the initial
distribution. We adopt here to realize a uniformwrever a
disk whose ray represents the initial incertitude on the posi-
tion.

2. Particle evolution.

Drawing N times independently of the noiseg and
w,' . Then use (3.2) and (3.3) to compute thawion of the
particle net.

3. Kalman filtering.

For each particles, computation of the kalman filters
conditioned in vier to estimate the amplitudes of the
groundvave and sikwave jointly. Let:

Hryi:{skg- R é

the obseration \ector and:

4.3 Regularization.

Unfortunately one may devie that such a procedure
doesnt male sure the uniform cermgence of the discrete
approximation as the numbear of particles wuld have to
grow with time which is inconsistent with a real time filtering
application.

However, a resampling techniques may be used toemak
sure the uniform corergence of the algorithm. The idea is
that after some filtering time, some particles are no more
relevant to represent the probability density as theellare
no more significant. When such a situation occurs, it is
necessary to resample the disitibn representation in wie
to emphasize the area of greafele To achiee this goal, it
sufiices to realize periodically a dvaof the N particles
according to the probability obtained at this step. As a
consequence, some particles will die as some others will
birth in the high leel area.

5 Application to LORAN-C signal. Dk |

5.1 Distinction between goundwave and skywave.
The main dificulty in LORAN-C filtering is to
distinguish within the ground ave and skwave. This is

more and more crucial when the distance between station and
recever is over 200ckm because the ratio within pkave

(5.6)

€= Ja et A
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the linear state space. The obsgion signal is then defined
by:
NS

7=y HE
k=1

The Kalman filter of¢k associated to the particieand the
stationk is then computed according to:

(5.7)

Etk\'tl = E{('—IAt\t—At+K{(’i(Z(_H{(’iEtk\'tl—At) (5.8)
whereK T is the classical Kalmareg.

4. Level computation.

For each particlé , if k stands for the number of station
receved at timet, one computes the standard non-normal-
ized likelihood.

Vi=Viig- ((Zt HEEf ) 2(HE Pl a(HEDT+R)™)

) (5.9)
wherePi_; is the coariance of the Kalman predictdthe
levels are then computed by:

Eak K, ID k, IED
exp- V;EH I:erfD—-—-—a-t-—D erfB—--E‘-—ED

0 e O Jp_ 9 10

Pl = —
k| k|
00
zEEXpH vt'D|'| [erf fal a‘ erf[} &
L0 H2h 5 '8 pki OO

where[ak, af] is the amplltude mtea! of the groundave
for the stationk andaj' is the amplitude prediction of the
groundvave of the statiork.

5. Estimation.

The carrier position estimation is computed by:

N N
> vt

%= 3 pixt, % = (5.11)
i=1 i=1
and the standard diations associated by:
, N
Z pt(xt _Xt) z pt(yt yt) (5-12)
i=1 i=1

6. Resampling
When the estimated disttition is dgenerated, that is
when the number of particleViag a level under a fird ratio

of 1/N, is greater than a treshold, the particles are resampled

according to the current estimated disition.

5.3 Simulation results.

The algorithm hee been simulated for weral SNR in
view to evaluate the limit of detectionfefiency of the parti-
cle filtering. The initial uncertainty ke been fird in a disk
of ray 10km. One has simulategl stations with a GRI equal
to 6000. The amplitude inteal was fixed t0[0.5, 1.5] . For
each stations, the amplitude of thgwskve was0dB, 14dB
and 20dB over the groundave respectiely. The delay s
fixed to65us. The interal of research of the gwave delays
was fixed to[60us, 80us] with M = 10 subdvisions. In all
theses simulations, the clock of the rgeeis supposed per-
fectly synchronized with those of the emitigerforming cir-
cular positioning.

On figure 1 and figure 2, one displays the longitude and
latitude error associated to their standardiat®ns for
SNR = -30dB, which is a typical alue for distance of
260km for standard stations. It appears that the algorithm
converge after aboulmn30s.

The figure 3 represent theatution of the distribtion of
the longitude. It appears clearly here the multi-modes of the
densities corresponding to themglenght of the signal, that
is 3km corresponding taOus.
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figure 1: Longitude estimation - SNR = -30 dB
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figure 2: Latitude estimation - SNR =-30 dB

figure 3: Evolution of distribtion of longitude - SNR = - 30dB
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