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ABSTRACT 

 
The problem of computing the time-bearing representation 
for data from a sensor array is considered. A novel 
approach to dealing with situations where the sources are 
mobile is presented.  The methodology adopted is based 
on ideas borrowed from the field of time-frequency 
analysis.  Through simulations it is demonstrated that the 
new approach produces time-bearing plots with greater 
resolution than conventional methods.  Further it is 
demonstrated that this approach yields bearing estimates 
with smaller variances than can be achieved using 
conventional techniques. 
 
 
 

1. INTRODUCTION  
In a sonar system data is often presented in the form of a 
time-bearing representation (display) [1].  These 
representations exploit the data from an array of L 
hydrophones to construct an estimate of the energy 
arriving at the array from a particular bearing during a 
time interval.  Here a narrow-band time-bearing 
representation is considered; broad-band representations 
can be considered as summing the results from a series of 
narrow-band representations. 

Most work related to these representations considers 
the problem of estimating the spatial spectrum for a 
particular time, this corresponds to effectively computing a 
single line of a time-bearing plot.  The problem of 
computing a spatial spectrum from signals measured via 
an array is closely related to the time domain problem of 
estimating a conventional spectrum from a time series.  
Indeed methods derived for one purpose can almost 
always be applied to the other [2]. 

It is one purpose of this paper to draw a parallel 
between the problems of computing a time-bearing 
representation from sensor array data and computing a 
time-frequency representation [3] from a single time-

series.  As shall be shown, whilst these problems do have 
similarities they are not directly equivalent and some 
modification is required before time-frequency methods 
can be applied to time-bearing representations. 

This paper begins with a recap of conventional 
methods for spatial spectrum estimation and how these are 
applied to time-bearing representations.  The salient points 
from time-frequency analysis will then be presented.  
Finally the application of some of the philosophies 
underlying time-frequency analysis is considered to the 
problem of constructing a time-bearing display. 
 

2. SPATIAL ENERGY SPECTRA  
The conventional problem of spatial spectral estimation 
can be summarized as: Given the set of vector (L×1) 
measurements, xn, n=0,1,2,…N-1, can one construct an 
estimate of the energy spectrum S(θ)?  The underlying 
data model is [4,5]: 

( ) nnn waHx +θ=  
where there are assumed to be K, distinct, point sources, 
the (K×1) vector, an, contains the K source amplitudes at 
time n, with H(θ) being the (L×K) steering matrix (each 
column of which is the steering vector associated with one 
of the discrete sources), θ is the (K×1) vector containing 
the source bearings and wn is a (L×1) vector representing 
the spatially disperse noise.  A random model for the 
source amplitudes an is assumed.  Much of the following is 
independent of array geometry but to aid discussions a 
Uniform Linear Array (ULA) geometry is assumed. 

Conventional approaches to estimation of a spatial 
spectrum are based on analysis of the data correlation 
matrix, namely by consideration of: 
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where h denotes conjugate transposition and the scaling 
factor 1/N may be omitted without penalty (it is included 



here so that the R can be truly considered as an 
approximation to the spatial correlation matrix). 

Given the spatial correlation matrix one can compute 
various estimates of the spatial spectrum, three commonly 
considered examples of which are: the conventional 
beamformer estimate, SCBF(θ) [5], the Capon estimate, 
SCapon(θ) [5] and the MUSIC spectrum SMUSIC(θ) [4,5], 
these are defined as:   
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where uk are the eigenvectors of R, in order of increasing 
eigenvalues.  For each of these methods to be successful 
one needs to assume that the sources are stationary over 
the N snapshots used to compute R. 

If one, or more, of the sources move during the N 
snapshots then it is apparent that a degradation in 
performance will be incurred (the construction of R is 
based on a stationarity assumption that is no longer valid).  
Specifically the spectral peak associated with the moving 
source will be spread, leading to a loss of resolution.  The 
degree of spreading will depend upon the rate of change of 
bearing and the length of the observation.  The 
significance of this spreading effect depends upon several 
factors.  For bearings close to end-fire, where bearing 
resolution is relatively poor, a greater degree of spreading 
can be tolerated than for sources close to broadside, where 
the bearing resolution is initially best.  Similarly for large 
arrays, with good bearing resolution, only modest source 
motions lead to significant degradations in performance. 

The conventional approach to constructing a time-
bearing plot is to divide the incoming array data into 
blocks of N snapshots and make a quasi-stationarity 
assumption (i.e. to assume that N is sufficiently small to 
make the stationary assumption justifiable).  This allows 
one to apply any of the conventional spatial spectral 
estimators to each block.  In general one aims to select N 
as large as possible without violating the quasi-stationarity 
assumption. 
 

3. TIME-FREQUENCY ANALYSIS  
Time-frequency analysis aims to compute a representation 
that reflects the time-varying spectrum for a time-series, 
x(t).  The oldest approach to time-frequency analysis is the 
spectrogram; which is constructed by windowing the data 
stream and invoking a quasi-stationarity assumption to 
allow one to perform a Fourier based spectral estimation.  
The resolution of the spectrogram is controlled by choice 
of the duration of windowing function, which controls 
both the temporal and frequency resolution. 

A more general class of bilinear time-frequency 
representations (Cohen’s class) is obtained through 

smoothing the Wigner-Ville Distribution (WVD).  The 
WVD, W(t,f), is defined as [3]: 
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where * denotes complex conjugation.  Evidently the 
WVD is the Fourier transform (w.r.t. τ) of the 
instantaneous correlation function r(t,τ).   

The WVD is particularly well suited to analyzing 
signals that are linear chirps.  This can be seen by 
considering a linear chirp signal of the form: 

( ) ( )ttiAetx β+απ=
22  

in which case one can show that: 

( ) ( )τβ+απ=τ tieAtr 222,  
To compute the WVD this is Fourier transformed 

yielding a delta function located at f=2αt+β [6], which 
can be regarded as the ideal representation for a linear 
chirp. 

Note that the WVD has succeeded in converting the 
linear chirp into a constant frequency signal that is 
perfectly suited for Fourier analysis.  One can view this as 
applying a non-linear transformation (computation of the 
instantaneous correlation function) to convert a non-
stationary signal into a stationary signal. 

The parallels between the spectrogram and a 
conventional time-bearing display should be evident, both 
rely upon segmenting the signal into short time intervals 
over which a quasi-stationarity assumption is appropriate.  
This paper seeks to illustrate how a principle, inspired by 
the WVD, can be applied to the time-bearing problem.  
The goal is to identify a non-linear transformation that will 
render array data more stationary. 
 

4. THE WVD PRINCIPLE APPLIED TO ARRAYS  
4.1 Principles  
The non-stationary situation considered here is that of a 
signal model of the form: 

( ) nnnn waHx +θ=  
The columns of the steering matrix remain constant but 

the bearing varies as a function of sample number.  The 
manner of this variation is assumed to be such that the 
individual steering vectors can be written as: 

( ) ( ) ( ) ( ) ( )[ ] tniLnini
n eeeh β+α−β+αβ+α=θ 121 �  

Hence the assumption is that the electric angle (rather 
than bearing) varies as a linear function of time.  Such 
variations are not unreasonable, since a source undergoing 
constant velocity linear motion will induce a linearly 
varying electric angle on a ULA.  For a ULA the electric 
angle, φ, is related to bearing through: 



( ) λθπ=φ /sin2 d  
where d is the inter-sensor spacing within the ULA and λ 
is the wavelength of the source signal. 

The non-linear transformation used in this case is: 
 ( )12/,...,1,01 −=⊗= −− Nnxxv nNnn  (1) 
where for ease it has been assumed that N is even (the 
extension to the case for odd N is trivial) and ⊗  represents 
a Hadamard (element-wise) product.  It is also obvious 
that vN-k-1=vk.  The effectiveness of this transformation can 
be seen if the case of a single non-stationary source is 
considered in the absence of noise, so that: 

( )nnn hax θ=  
where the bearing is assumed to conform to the model of a 
linearly varying electric angle, φn=αn+β.  In which case 
the vector vn is given by: 
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where θm is the mean angle given by α(N-1)/2+β.  The 
critical observation is that the vector vn is stationary in the 
sense that its steering vector is invariant with n.   

The methodology proposed here to compute the 
correlation matrix for the vectors vn: 
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The summation only extends to N/2-1 on account of the 
symmetry in the vectors vn.  The matrix C is a quartic 
function of the data, so contains information about 4th 
order statistics. 

The matrix C can be employed in place of the matrix R 
in the standard array processing algorithms, e.g. CBF, 
Capon and MUSIC.  Once this substitution is made one 
also needs to employ the steering vector h(2θ).  The effect 
of these substitutions is that the algorithms then become 
insensitive to motions that induce linear variations in the 
electric angle, leading to an increase in resolution of the 
time-bearing plot.  This can be compared with the manner 
in which the WVD has increased resolution in comparison 
to the spectrogram (although the two mechanisms by 
which the resolution increases are achieved are subtly 
different).  To reflect this similarity the technique is 
referred to as the Wigner Beamformer (only application of 
these techniques to a CBF is presented here). 

It is interesting to note that the amplitudes bn are 
formed as the product of two of the original amplitudes.  
Hence if one assumes Gaussianity for an, then the bn will 
not have a Gaussian distribution. 
 
4.2 Limitations  
The above methodology does introduce a variety of issues 
that need to be addressed.  This section aims to outline 

how these limitations can be overcome.  Details of the 
approaches will be given elsewhere. 

The 2 major problems that need to be overcome are 
considered in the next two subsections. 
 
4.2.1. Introduction of Aliasing 
The multiplication used to form vn doubles the spatial 
resolution needed to accurately represent the data.  If this 
is not appropriately dealt with then aliasing will be 
introduced.  This problem is identical to that encountered 
when computing the WVD of a real signal [7].  In the case 
of the WVD the most widely employed solution is to 
convert the signal into its analytic form prior to computing 
the WVD.  In its analytic form the signal only occupies 
half the frequency band and can be multiplied by itself 
without introducing aliasing.  Such a solution can not be 
adopted in this application because the array data is 
already in complex form and so one can not generate an 
analytic representation. 

The solution adopted here is to implement (1) through 
convolution in the frequency domain, where the bandwidth 
can be readily extended by appending zeros to the Fourier 
representation.  Alternatively this can be interpreted as 
interpolating the data.  The implementation of this scheme 
is made simple by the choice of a ULA structure. 
 
4.2.2. Interference Terms 
The major drawback of the WVD is the fact that it exhibits 
interference terms: if a signal contains 2 distinct 
components then the resulting WVD contains 3 elements, 
the additional element arising from the interaction of the 2 
“real” elements.  The generation of these terms arises from 
the quadratic nature of the WVD.  In time-frequency 
analysis the interference terms are characterized by their 
oscillatory nature in the time-frequency plane.  This 
oscillatory nature means that the interference terms can be 
attenuated through application of a 2-D smoothing 
operation. 

The application of the preceding methodology 
generates interference terms through a mechanism similar 
to that encountered in the WVD.  However the 
interference terms generated through (1) have the 
undesirable property of being non-oscillatory.  Similar 
non-oscillating interference terms are also associated with 
the 4th order Wigner distribution [8,9].  The methodology 
applied in [8,9] can be used to reduce interference terms in 
this application. 
 

5. RESULTS  
Figure 1 shows time-bearing plots computed for simulated 
data that mimics a source moving parallel to a 32 element 
ULA (sensor spacing 0.5λ).  During this maneuver 1000 
snapshots are generated with the bearing varying between 



-80° and 80°.  The measurements are corrupted by 
spatially uncorrelated Gaussian noise at 0 dB.   

The first three frames in Figure 1 are computed using 
different block sizes (N).  The blocks are overlapped such 
that 10 new snapshots are introduced for each new line.  In 
these plots time is shown down the page, bearing is plotted 
horizontally (0º corresponding to broadside) and dark 
shades represent high energies on a linear scale.  One can 
see that short block sizes result in little spreading of the 
source track.  However the use of short blocks implies that 
the bearing estimates are less reliable (they will have 
greater variance).  Larger data block sizes result in more 
spreading of the track, directly leading to greater 
uncertainty in the source bearing estimates.  The final 
frame shows the result of applying the Wigner 
Beamformer.  The computed track is much better resolved.  
Note also that the full range of azimuth (allowing for left-
right ambiguity in the array) has been exploited, 
highlighting that no aliasing problems appear. 

 
Figure 1: Time-Bearing Plots for a Source Undergoing a 

"Drive Passed" Maneuver  
Figure 2 illustrates the results of a series of simulations 

exploring the accuracy of the Wigner Beamformer.  For 
each trial 100 different realizations of a single block of 
100 snapshots is computed (the SNR is 0dB).  The spatial 
spectrum is computed for each block and the peak of that 
spectrum is taken as the estimate of the source bearing.  
The variance of these estimates is computed for CBF and 
the Wigner beamformer.  For each trial a different 
maneuver is considered, starting at -θ and ending at θ.  
Figure 2 plots the variances (on a dB scale) as a function 
of the angle traversed (2θ).   

Figure 2 illustrates several properties of the Wigner 
Beamformer.  When there is no source motion CBF has a 
lower variance than the Wigner Beamformer.  This is to be 
expected since the CBF is known to be optimal for a single 
stationary source in spatial white Gaussian noise.  
However the effect of relatively small motions <1º is to 
make the Wigner Beamformer yield a better estimate of 

mean bearing.  As the motion is increased, so that very 
large motions are experienced during a block, the 
performance of the Wigner Beamformer remains stable, 
whilst the CBF's performance degrades dramatically. 

 
Figure 2: Performance of Wigner Beamformer for 

Different Levels of Source Motion  
6. CONCLUSIONS  

This paper has described a novel methodology for 
obtaining time-bearing representations.  The technique 
relies upon employing non-linear operations on the data to 
partly mitigate some of the effects of source motion.  It is 
shown that this technique yields significantly better 
behavior for mobile targets than that which can be 
achieved by the CBF. 
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