
EFFICIENT IDCT IMPLEMENTATIONS ON VLIW PROCESSORS

Daniele Bagni, Antonio Borneo, Luca Celetto

Advanced System Technology, STMicroelectronics
Via C. Olivetti, 2, 20041 Agrate Brianza (MI), Italy

daniele.bagni@st.com, antonio.borneo@st.com, luca.celetto@st.com

ABSTRACT

In this paper we describe two efficient software
implementations of bi-dimensional IDCT (Inverse
Discrete Cosine Transform). Instead of using a traditional
separation into eight horizontal and vertical mono-
dimensional IDCT stages, we apply a novel approach to
directly represent the bi-dimensional IDCT into only eight
mono-dimensional units followed by a network of addition
and subtraction operations. We have then optimized this
method in pure ANSI-C for 32-bit architecture VLIW
(Very Long Instruction Word) processors. By arranging
the network structure in a proper way to exploit sub-word
parallelism and by defining totally new multimedia
instructions, we have implemented a second version that is
23% more efficient than the previous one. Our fixed-point
arithmetic IDCT implementations are fully compliant with
the IEEE 1180 standard, as required by most of the video
compression standards.

1. INTRODUCTION

In this paper we describe a fast algorithm of 8x8 bi-
dimensional IDCT that is then implemented in two
versions: the first in pure ANSI-C style, the second based
on SIMD (Singe Instruction on Multiple Data) extensions
to the C-language. The target processors are ST210 and
TM1100, both having 32-bit VLIW CPU architectures.

The organisation of this paper is the following:
Section 2 describes the main features of the two adopted
VLIW CPUs. Section 3 illustrates the IDCT algorithm we
have implemented in software (SW). Section 4 deals with
the new SIMD we have defined to increase execution
efficiency. Sections 5 and 6 respectively give performance
figures and draw our conclusions.

2. TM1100 AND ST210 VLIW CPU CORES

Instruction Level Parallelism (ILP) speeds up programs by
executing in parallel several elementary RISC operations,

such as memory load and store, integer addition and
multiplication. In a VLIW CPU these operations are taken
from a single stream of execution, rather than from parallel
tasks. Thanks to sophisticated algorithms that extract ILP
from applications written in C-language, the compiler
schedules (statically) the code to optimally fill most of the
functional units of the VLIW CPU [16]. This parallelism
is transparent to the user, although the programmer may
restructure his code according with some proper rules to
help the compiler to achieve a high degree of ILP.

Multimedia applications in digital consumer
market require high performance and low cost silicon
implementation combined with minimum time-to-market.
The current trend of many silicon manufacturers is to build
VLIW processors to allow many functions to be
implemented as SW algorithms instead of HW circuits,
since a customized VLIW-based device can offer greater
flexibility at the cost of hard-wired logic.
 To this purpose the ST200 family of VLIW
customizable processors has been jointly developed by
Hewlett-Packard Laboratories and STMicroelectronics
[10] and recently presented [11,12]. The family is based
on a modular 4-issues architectural block named “cluster”,
with seven 32-bit functional units. A cluster can perform
up to four integer RISC operations in every clock cycle
(with the constraint of a single load/store per cycle),
therefore the maximum ILP achievable is 4 and the
maximum instruction length is 128 bits. N clusters can be
connected together to form a CPU with 4xN issues. The
first test chip of this family, named ST210, is a single-
cluster 4-issues CPU, it allows the equivalent of 1GHz
RISC performance. The ST210 processor is equipped with
64 general-purpose 32-bit registers, 32KB I-cache and
32KB D-cache memories. A key benefit of ST200 family
is that it combines a relatively simple but highly flexible
architecture with very sophisticated compilation tools.
Therefore, enhancements to the micro-architecture, such as
new custom-instructions and number of clusters, can be
analyzed and the resulting cost/performance characteristics
quickly and reliably investigated before committing to an

architectural decision. In Section 4, we define and propose
new multimedia instructions for a future ST210-variant.
 The TriMedia family was presented in [13].
Every device is a complete System-On-Chip (SOC)
containing a VLIW CPU accompanied by intelligent A/V
peripherals. The TM1100 processor [14] has 128 general-
purpose 32-bit registers, D-cache size of 16 KB and I-
cache of 32 KB. TM1100 has a very different VLIW
approach in comparison with ST210 architectural
simplicity: there are twenty-seven different functional
units but only five of them can be filled in a clock cycle
(with a maximum of two load/store operations per cycle).
Because of the number of available functional units and
their assignment, some operations may have to wait for
one or more cycles before they are executed, which means
that it is not possible to choose every mixing of such
operations. The 133MHz clock frequency allows the
equivalent of 666MHz RISC performance on its 5-issues
VLIW CPU (without considering its SIMD extensions).
 We have emphasized these aspects to show that,
although dedicated mainly to ST210, our novel IDCT
implementation is suitable for any VLIW processor, being
ST210 and TM1100 very different machines.

3. INVERSE DCT

The DCT concentrates most of the energy distribution into
a few frequency coefficients. This important propriety
makes this transform, together with its inverse (IDCT), a
valuable tool for well-known compression standards of
still and moving pictures, like JPEG, MPEG-1, MPEG-2,
MPEG-4, H-261 and H.263. In these systems the DCT is
normally applied bi-dimensionally on a square block of
8x8 pixels. Being a separable transform, an 8x8 DCT can
be separated, for example, in eight horizontal mono-
dimensional DCT stages (each working on an 8-sample
row) followed by eight vertical DCT stages (each working
on a column of 8-coefficient previously produced by the
horizontal modules). Vice-versa, the decomposition can be
done first on vertical and then on horizontal direction; the
result is exactly the same because of the DCT linearity
property, given sufficient accuracy in fixed-point
arithmetic implementation.

In theory, an 8-sample mono-dimensional DCT
requires 64 multiplication and 56 addition operations,
which makes its usage very expensive in consumer market
devices. Therefore, several computationally efficient
algorithms have been developed to reduce the DCT
complexity. The methods reported on [1,2,3,4,5]
represent just few examples among the large variety of
articles available in literature and apply the above-
mentioned property of separability. For instance, the
MPEG-2 Test Model 5 video encoding SW reference
model [6,7,8] makes use of the five-stages Wang’s IDCT,
based on sparse-matrix factorization (this class of matrices

has few non-zero coefficients) [1]. Wang’s 8-point DCT
uses only 29 addition and 11 multiplication operations
instead of the 56 plus 64 theoretically required. As we will
describe in Section 5, this algorithm can be very efficiently
optimized in C-language on VLIW CPUs.

In a recently appeared paper [9], Huang/Wu
propose a fast direct bi-dimensional DCT based on index
permutation. The mathematical description of such
algorithm is beyond the scope of this paper. Coarsely, we
can say that an 8x8 bi-dimensional DCT can be computed
through eight (8-sample) mono-dimensional DCT units
followed by a network of four butterfly stages, as shown in
Figure 1. Since the network is independent on the mono-
dimensional DCT calculation, any DCT algorithm can be
used: in our case we have applied the above Wang’s DCT
given its good performance on VLIW CPUs. We
emphasize that not all the final 8x8 outputs are exactly the
required 8x8 DCT values, because of a simplification used
in the algorithm; as a consequence, we have put fifteen
additional multiplications to rescale the related output
values that differ from the required ones (in the last stage
“MULs” of Fig 1).

Figure 1: Structure of Huang/Wu direct DCT.

A butterfly is a structure with an addition-

subtraction pair of operations, as shown in Figure 2. When
we analyzed the algorithm of Huang/Wu, we had the
intuition that the network of post-butterflies could be
suitable for a SIMD implementation. Effectively, during
the fixed-point arithmetic modeling, we realized that a 16-
bit intermediate data representation in the network was

1D
DCT

1D
DCT

1D
DCT

1D
DCT

1D
DCT

1D
DCT

1D
DCT

1D
DCT

enough to provide a DCT suitable for image processing.
The possibility to represent the network of butterflies with
16-bit samples, allows us to investigate on sub-word
parallelism, by packing 16-bit data into 32-bit words, as a
first step to target a SIMD implementation.

We have also inverted the proposed forward DCT
in order to obtain its inverse transform. This IDCT can be
graphically described by a network of butterflies, followed
by eight mono-dimensional IDCT units; it corresponds to
the same graph of Fig.1, with flow from right to left.

Figure 2: Graphical symbol of a butterfly structure.

4. BUTTERFLY SIMD

Several multimedia applications spend significant amounts
of execution time dealing with 16-bit sub-words. Using
32-bit operations to manipulate these small data items
makes inefficient use of a 32-bit ALU (Arithmetic Logical
Unit). There is little cost difference between a standard 32-
bit functional unit that can process one pair of 32-bit
operands and a SIMD-enhanced ALU that can also
process two pairs of 16-bit operands. If we could apply the
32-bit functional units to operate on two 16-bit data items
simultaneously, performance would be improved by a
significant factor. In fact, a SIMD is equivalent to several
elementary RISC operations and can be issued in a single
clock cycle like any other “traditional” operation by the
VLIW CPU. However, a C-program that uses SIMD
extensions is no more ANSI compliant: in fact the
compiler has to manage SIMD instruction as assembly
intrinsic, that is, built-in C-language functions
corresponding to the processor assembly instructions.

The first stage of the network in Figure 1,
immediately contiguous to the eight mono-dimensional
DCT units, is very regular. With a careful selection of the
pairs of 16-bit data within each 32-bit operand, this stage
could be implemented by “classical” SIMD instruction
like TM1100 DualAdd and DualSub [13]. Unfortunately,
starting from the second stage, the same SIMD
instructions are no more easily applicable. A complex set
of operations to re-order the packed data is necessary
before going on with the following stages, but the
overhead of these extra packing/unpacking instructions
diminishes dramatically the potential performance gain
obtained by DualAdd and DualSub SIMD.
 To solve this problem, since the only regular
structure inside the post-butterflies network is the butterfly
itself, we mapped it into a new set of SIMD instructions,

never used by other microprocessor manufacturers to our
knowledge. In order to freely select the input
configuration, four possibilities are considered, depending
on the desired high/low part of the input operands, named
respectively Butterfly_HH, Butterfly_LH, Butterfly_LL
and Butterfly_HL, as shown in Fig. 3. Each instruction has
two input registers that provide the two 16-bit sub-words,
the output is a packed 32-bit word composed by two 16-bit
signed integer values: one represents the sum of two 16-bit
data items, the other one their difference (note that
reversing the higher or lower part of the output is
transparent for the application and for this new SIMD
proposal).

5. PERFORMANCE

To compare the results in a consistent way, we define the
“normalized-ILP” as the ratio of “effectively achieved”
and “theoretically achievable” ILP values. Therefore, the
maximum normalized-ILP is always 1.0, independently on
the number of issues of the processor (we remember that
ST210 and TM1100 have respectively 4- and 5-issues
VLIW CPUs). The IDCT is measured in clock cycles per
one block of 8x8 pixels, but these cycles are of VLIW
nature and then they will be multiplied by the effectively
achieved ILP, in order to obtain the equivalent amount of
operations per block from an ideal RISC processor,
referred as “op/blk” in the following.

The five-stages Wang’s bi-dimensional IDCT [1],
optimized in C-language, takes around 1155 ops/blk on
ST210 and 1114 ops/blk on TM1100 (without any
optimization, the original C-program was about three
times less efficient on both processors). The normalized-
ILP values are respectively 0.84 (3.36/4.0) and 0.93
(4.66/5.0) for ST210 and TM1100, with related code size
of 5240 and 4110 bytes.
 Our ANSI-C implementation of Huang/Wu’s
IDCT requires respectively 980 and 884 ops/blk on ST210
and TM1100 CPUs, with a related normalized-ILP of 0.97
(3.88/4.0) and 0.92 (4.64/5.0). Again, as for the Wang’s
case, these ILP figures are quite good and demonstrate the
efficient usage of the machine resources. However,
Huang/Wu’s algorithm is better than Wang’s one for two
reasons: 1) it is less complex and it saves about 15%
(ST210) and 20% (TM1100) of ops/blk, 2) it allows code
size reduction: 3976 (ST210) and 3226 (TM1100) bytes,
which represent a factor respectively of 24% and 21%,
depending on the processor.

Although the ST210 does not have SIMD in its
instruction set, its tool-chain allows the simulation of new
instructions for architectural exploration of its variants. By
assuming that any Butterfly SIMD have a latency of 1
clock cycle on the ST210, the SIMD implementation
achieves a result of 750 ops/blk with a normalized-ILP of
0.96 (3.84/4.0) and code size of 3088 bytes. In term of

A

B

A+B

A-B

ops/blk, this result represent a performance improvement
of about 23%, related to the pure ANSI-C version (for
sake of clarity, we emphasize that only the network is
implemented with butterflies SIMD, the eight DCT units
remain in pure ANSI-C). Unfortunately we could not test
these SIMD on the commercially available TM1100 tool-
chain, which does not allow to add and to simulate new
instructions. If we compare the SIMD-based Huang/Wu
implementation with ANSI-C Wang’s one, our total gain is
35% in terms of ops/blk. Table 1 shows a performance
summary.

Finally, both Wang’s and Huang/Wu’s (either
ANSI-C or SIMD) fixed-point arithmetic implementations
are fully compliant with the IEEE 1180 standard [15], as
required by almost every picture and video compression
standard.

Figure3: The new butterfly SIMD instructions, proposed
for an ST210-variant.

6. CONCLUSION

In this paper we presented our fixed-point arithmetic
implementation of a direct IDCT, according to Huang/Wu
[9], as the composition of eight mono-dimensional Wang’s
IDCT [1] modules plus a network of butterflies stages, for
a pure SW implementation of DCT-based video encoding
systems. This algorithm can be mapped very efficiently in
ANSI-C language on different VLIW CPU architectures,
like ST210 and TM1100, with a performance gain in the
range of 15% and 20% when compared with a separable
bi-dimensional pure Wang’s IDCT [1].

For an ST210-variant, we also defined totally
new SIMD instructions that fit the algorithm to the
architecture with an efficiency 23% greater than its ANSI-
C version and 35% better than the Wang’s bi-dimensional
IDCT.

Table 1: Performance summary.

REFERENCES

[1] Z. Wang, “Fast Algorithms for the Discrete W Transform and
for the Discrete Fourier Transform”, IEEE Tr. on Acoustic,
Speech, and Signal Processing., vol. ASSP-32, no. 4, pp. 803-
816, Aug. 1984.
[2] W. H. Chen, C. H. Smith, S. C. Fralick, “A fast
computational algorithm for the discrete cosine transform”,
IEEE Tr. on Communication, vol. COM-25, no. 9, pp. 1004-
1009, Sep. 1977.
[3] Z. Wang, “Reconsideration of A Fast Computational
Algorithm for the Discrete Cosine Transform'”, IEEE Tr.on
Communications, vol. COM-31, no. 1, pp. 121-123, Jan. 1983.
[4] X. Wan, Y. Wang, W. H. Chen, “Dynamic Range Analysis
for the Implementation of Fast Transform”, IEEE Tr. on Circuits
and Systems for Video Technology, vol. 5, no. 2, pp. 178-180,
Apr.1995.
[5] C. Loeffler, A. Ligtenberg, G. S. Moschytz, “Practical Fast 1-
D DCT Algorithms with 11 Multiplications”, Proc.of Intern.
Conf. on Acoustic, Speech and Signal Processing (ICASSP-89),
pp 988-991, Glasgow, Scotland, May 1989.
[6] ISO/IEC 13818-2, Draft International Standard, May 1994.
[7] ISO-IEC/JTC1/SC29/WG11, “Test Model 5”, Apr. 1993.
[8] S. Eckart, C. Fogg, “MPEG-2 Encoder / Decoder”, Version
1.2, July 1996, Copyright (c) 1996, MPEG SW Simulation
Group. SW available from http://www.mpeg.org/MSSG/.
[9] Y-M. Huang, J-L.Wu, “A Refined Fast 2-D Discrete Cosine
Transform Algorithm”, IEEE Tr. on Signal Processing, vol 47,
no. 3, Mar. 1999.
[10] http://www.hpl.hp.com/cambridge/projects/cfp/
[11] P. Faraboschi, G. Brown, J. Fisher, G. Desoli, F.
Homewood, “Lx: a technology platform for customizable VLIW
embedded processing,” Proc. of the 27th Intern. Symposium on
Computer Architecture (ISCA-27), Jun. 2000, pp 203-213.
[12] P. Faraboschi, F. Homewood, “ST200: A VLIW
Architecture for Media-Oriented Applications”, Microprocessor
Forum, Oct. 2000.
[13] B. Case, “First TriMedia chip boards PCI bus”,
Microprocessor Report, vol.9, no. 15, Nov. 1995.
[14] TriMedia TM1100 Preliminary Data Book, March 1999
Second Draft. Philips Electronics North America Corporation.
[15] “IEEE Standard Specifications for the Implementations of
8x8 inverse Discrete Cosine Transform”, IEEE Standard 1180-
1990, Mar. 18, 1991.
[16] P. Faraboschi, G. Desoli, J.A. Fisher, “The Latest Word in
Digital and Media Processing”, IEEE Signal Processing
Magazine, pp 59-85, Mar. 1998.

Butterfly_HH

Hx Lx Hy Ly

Hx+Hy Hx-Hy

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_HL

Hx Lx Hy Ly

Hx+Ly Hx-Ly

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_LH

Hx Lx Hy Ly

Lx+Hy Lx-Hy

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_LL

Hx Lx Hy Ly

Lx+Ly Lx-Ly

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_HH

Hx Lx Hy Ly

Hx+Hy Hx-Hy

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_HL

Hx Lx Hy Ly

Hx+Ly Hx-Ly

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_LH

Hx Lx Hy Ly

Lx+Hy Lx-Hy

First 32 bits operand Second 32 bits operand

32 bits result

Butterfly_LL

Hx Lx Hy Ly

Lx+Ly Lx-Ly

First 32 bits operand Second 32 bits operand

32 bits result

algorithm ST210 TM1100
ops/blk code-size ops/blk code-size

bytes bytes
Wang (ANSI-C) 1155 5240 1114 4110
Huang/Wu (ANSI-C) 980 3976 884 3226
Huang/Wu (SIMD) 750 3088

	EFFICIENT IDCT IMPLEMENTATIONS ON VLIW PROCESSORS
	ABSTRACT

