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ABSTRACT

We address the problem of matched subspace detection in
the presence of arbitrary noise and interferents, or interfer-
ing signals that may lie in a possibly unknown subspace,
but that nevertheless corrupt the measurements. A hypoth-
esis test that is robust to interferents yet sensitive to the
signal of interest is formulated. The test is applicable to a
large class of noise density functions. In addition, specific
expressions for the generalized likelihood ratio (GLR) detec-
tors are derived for the class of Generalized Gaussian noise.
The detectors are generalizations of the χ2, t, and F statis-
tics used with Gaussian noise. For matched filter detection,
these expressions are simpler and computationally efficient.
ROC performance results based on simulation demonstrate
the superior performance obtained with detectors based on
the correct noise model. The results also demonstrate the
improved performance robust detectors offer when interfer-
ents are present.

1 Introduction

We design matched subspace detectors that account for:
1) the presence of non-Gaussian noise, in particular
Generalized Gaussian noise, and 2) the presence of in-
terfering signals that may lie in an unknown subspace
different from that of the signal of interest, but that nev-
ertheless corrupt the measurements. We refer to these
interfering signals as interferents. Pioneering and cur-
rent work on matched subspace detection has been con-
ducted by Scharf et al. in [8, 9], and in the references
therein. This work deals with the case when the noise
variance is known, and when it is unknown (CFAR).
Subspace detection in the presence of spherically invari-
ant noise density functions, has been considered for in-
stance, in [11]. We note that though in the presence of
Gaussian noise, CFAR optimal and robust detectors are
equivalent from the point of view of performance, such
is not the case when the noise variance is known. Nor is
it the case when the noise is non-Gaussian, whether the
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variance is known or unknown. The main contributions
of the paper are:

• The derivation of a hypothesis test for subspace
detection that is robust to unlearned interferents
(Eqs. 9 and 10).

• When the noise is Gaussian and the variance is
known, we derive a robust detector (Eq. 12) that
is more general than the well known χ2-distributed
matched subspace detector [8].

• For the class of Generalized Gaussian density func-
tions, we derive expressions for the optimal and ro-
bust detectors that can be computed numerically.
This rich family of density functions is used in ap-
plications ranging from random media [3] to under-
water acoustics [7] to medical imaging [1] and video
technology [10].

• In the particular case of robust matched filter de-
tection, when the signal space is one-dimensional,
we derive computationally efficient expressions
(Eqs. 18 and 21); The expressions require compu-
tations in one-dimensional subspaces only.

We analyze through simulation the performance of the
detectors under different scenarios. Moreover, we apply
the robust non-Gaussian detectors to clinical functional
magnetic resonance image (fMRI) data to characterize
the brain’s response to stimuli in [1].

We note that the term robust hypothesis test, or more
generally, robust statistics, is used in other literature to
designate robustness to statistical outliers [4]. In failure
detection work related to dynamic plants, such as in [5],
robustness is with respect to noise and plant model un-
certainties. The relationship between the different con-
cepts of robustness is not discussed here.

In the next section, we formulate the robust detection
test, and in Section 3, we derive the robust detectors.
Numerical results are in Section 4, while Conclusions
are in Section 5.
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2 Problem Formulation

We describe the signal and measurement models in Sec-
tion 2.1, before formulating the robust detection test in
Section 2.2.

2.1 The signal and measurement models
Consider the general model

x = Sθ + Uψ + ωv (1)

where x is a measurement vector, S is the K ×M ma-
trix whose columns span the signal space, θ is the asso-
ciated gain vector, U is the K× (K −M) matrix whose
columns span the unlearned interferent space, and ψ is
the associated vector gain. One can only unambigu-
ously see this unlearned component in the space orthog-
onal to the signal subspace. Therefore, the presence of
these effects can only be inferred from the component
of the measurement that lies in the null space of the
space spanned by the columns of S, so we assume the
columns of U to span the null space of S. We deal
with known subspace interference in [2]. The noise vec-
tor v is a unit-variance noise vector with known or un-
known scalar width factor ω. Its elements are assumed
to be independent and identically distributed General-
ized Gaussian random variables. Specifically, For a K-
dimensional random vector x, the Generalized Gaussian
density function is defined as

fp(x|m,ω) =
(

p

2ωΓ(1/p)

)K
exp

(
−
(
‖x−m‖p

ω

)p)
for p ∈ (0,∞), where Γ(k) =

∫∞
0
tk−1 exp (−t) dt, is

the Gamma function, and for an arbitrary vector y,
‖y‖p ≡ (

∑
i |yi|p)

1
p . Here m,ω, and p are respectively

the location, width factor and shape or decay parame-
ters of the density function. For any p, the width pa-
rameter ω is proportional to the standard deviation σ.
Specifically, ω = σ (Γ(1/p)/Γ(3/p))

1
2 .

2.2 The robust detection test
For hypotheses H0 and H1, let U0 and U1 denote the
subspaces of unlearned effects spanned by the columns
of U0 and U1, respectively, and, for any matrix W , let
N (W ) denote its null subspace. A hypothesis test that
we can pose is

H0 : x = U0ψ0 + ω0v0, U0 ⊆ N (S) (2)
H1 : x = Sθ + U1ψ1 + ω1v1, U1 ⊂ N (S) (3)

The conditions on the dimensions of the unlearned ef-
fects subspaces U0 and U1 are needed for the hypothesis
test to be well posed. In terms of the matrices U0 and
U1 the generalized likelihood ratio test for Eqs.(2-3) is

Λ (x;U0, U1) =
maxθ1,ψ1,ω1 f (x|H1, U1, θ1, ψ1, ω1)

maxψ0,ω0 f (x|H0, U0, ψ0, ω0)
(4)

To obtain robustness to unlearned interferents while
maintaining sensitivity to the signal of interest, we
choose U0r , U1r such that

U0r = arg max
U0

max
ψ0,ω0

f (x|H0, U0, ψ0, ω0) (5)

U1r = arg min
U1

max
θ1,ψ1,ω1

f (x|H1, U1, θ1, ψ1, ω1) (6)

which, as derived in [2], leads to

U0r = N (S) (7)
U1r = {0} (8)

where N (S), the null space of the matrix S, is spanned
by the columns of U0r = U0 (we drop the subscript
r for convenience), and {0} is the zero subspace. We
then have the following robust matched subspace detec-
tion test.

H0 : x = U0ψ0 + ω0v0, U0 = N (S) (9)
H1 : x = Sθ + ω1v1, (10)

We show in [2] that the solutions of Eqs.(7-8) are ob-
tained for a large class of non-Gaussian noise that is not
restricted to the Generalized Gaussian pdf. We only im-
pose this condition to derive the generalized likelihood
ratio statistics for these tests. Note that, when U0 = 0,
then we have an optimal or conventional matched sub-
space detection test.

3 The Robust Matched Subspace Detectors

We first consider the case where the width factor is
known, and then the case where it is unknown (CFAR).

Known ω. For the test of Eqs.(9-10), we have, apart
from a constant, the log-likelihood ratio

λp,rk(x) = log
exp

(
−‖x− Sθ̂p‖pp/ω

p
1

)
exp

(
−‖x− Uψ̂p‖pp/ωp0

)
= −

(
1
ω1
‖x− Sθ̂p‖p

)p
+
(

1
ω0
‖x− Uψ̂p‖p

)p
(11)

where the subscripts r and k are for robust detector and
known ω respectively, and θ̂p and ψ̂p are the maximum
likelihood estimates of θ and ψ, respectively. When
there are no interferents and U ≡ 0, we have an optimal
matched filter detector. For the Gaussian case, when
p = 2 and with ω0 = ω1, Eq.(11) becomes in terms of
the common variance σ2

λ2,rk(x) =
1

2σ2
x′ (PS − PU )x (12)

where for an arbitrary matrix W , the projection matrix
is given by PW ≡ W (W ′W )−1

W ′. When U ≡ 0, we
have the well known χ2-distributed matched subspace
detector [8]

λ2,ok(x) =
1

2σ2
x′PSx (13)
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When the signal space is one dimensional, we have
a matched filter detector. In that case, it is possible to
eliminate the need for parameter computations in higher
dimensional spaces even though the interferent space U
is not one dimensional. For this, we need the following
lemma.

Lemma 1 Let h and η be column vectors and define
Jp (η) = ‖η‖pp, p ∈ (0,∞) The optimization problem

min
η
Jp(η) (14)

subject to h′η = b (15)

has as a solution J∗p = (|b|/‖h‖q)pwhere q = (p/p − 1)
for p > 1, and q ≡ ∞ otherwise. The optimal η is

ηi = b
sgn (hi) |hi|(1/(p−1))

‖h‖qq
p > 1 (16)

ηi =
{
b/hi if |hi| = maxj |hj |

0 otherwise p ≤ 1(17)

See [2] for the proof. Using this lemma (See [2]), we
obtain a simplied expression for λp,rk when the signal
space is one-dimensional, in which case we set S = s,

λp,rk(x) = −
(

1
ω1
‖x− sθ̂p‖p

)p
+
(

1
ω0

|s′x|
‖s‖q

)p
(18)

The advantage of this simplified form is that we do
not need to be concerned with any residual computa-
tion in the larger dimensional subspace U spanned by the
columns of U , while the computation of θ̂p takes place
in a one-dimensional subspace.

Unknown ω (CFAR). After performing the necessary
algebra, which we omit, the generalized likelihood ratio
(GLR) taken to the power of 1/K for convenience, leads
to the robust CFAR matched subspace detector

λp,ru(x) =
‖x− Uψ̂p‖p
‖x− Sθ̂p‖p

(19)

Here the subscripts r and u are for robust detector and
unknown parameter ω respectively. Note that, unlike in
the previous section, we do not need to take the log of
the likelihood ratio to obtain an expression in terms of
the ratio of residuals. In the absence of unlearned in-
terferents, i.e. when U ≡ 0, we have the optimal CFAR
matched subspace detector

λp,ou(x) =
‖x‖p

‖x− Sθ̂p‖p
(20)

When S is one-dimensional (S = s), we can eliminate
the need for a search in the generally multidimensional
space spanned by the columns of U in the CFAR robust
detector of Eq.(19), by applying Lemma 1 to get

λp,ru(x) =
|s′x|

‖s‖q‖x− sθ̂p‖p
(21)

In the Gaussian case, Eqs.(21 and 20) become, respec-
tively

λ2,ru(x) =
x′Psx

x′PUx

= cot (< x, s >) (22)

λ2,ou(x) =
x′x

x′PUx

= csc (< x, s >) (23)

where < x, s > denotes the angle between x and s.
Thus, in the Gaussian case, as is well known [8], the
underlying statistic is the angle between x and s, and
the two detectors thus provide the same performance.
For an arbitrary p, we have

λp,ru
λp,ou

=
‖s‖2‖x‖2
‖s‖q‖x‖p

cos (〈x, s〉) (24)

From the above discussion, we observe the following:

• Performance. the performance of the robust and
optimal CFAR detectors are not necessarily the
same when p 6= 2, as shown in Section 4.

• Invariance properties. When p = 2, as Eqs.(22 and
23) show, the two CFAR detectors are rotation and
scale invariant. By contrast, for a general p, they
are only scale invariant. They would also be invari-
ant to transformations that leave the ratio of the
p-norm of residuals unchanged.

4 Results and Discussion

Figure 1 compares the optimal and robust CFAR Lapla-
cian detectors (p = 1), or λ1,ou and λ1,ru respectively, in
the presence of Laplacian noise with unit standard de-
viation under two different scenarios: interferent absent
and interferent present. The thick solid curve repre-
sents the performance of the optimal detector λ1,ou in
the absence of unlearned interferents, while the the thick
dashed curve represents the performance of the same de-
tector in the presence of an unlearned interferent signal
of magnitude equal to twice that of the signal magni-
tude, meaning ψ = 2θ. The thin curve represents the
performance of the robust detector λ1,ru in the absence
(solid) and presence (dashed) of interferents. Compari-
son of the four curves indicates that the robust detector,
whose performance is suboptimal when there is no inter-
ferent, provides superior performance when compared
to the suboptimal performance of the optimal detector
in the presence of interferents. Since the magnitude of
the interferent signal is generally unknown apriori, the
robust detector’s insensitivity to interferents implies a
more predictable ROC performance.
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Figure 1: Nominal vs. robust performance for the CFAR
optimal or λ1,ou (thick curves) and CFAR robust or
λ1,ru (thin curves) Laplacian detectors in the presence
(dashed) and absence (solid) of unlearned interferents.

Figure 2 shows two plots that compare the proba-
bility of detection vs. false alarm performance of the
Laplacian and Gaussian CFAR detectors, λ1,ou and
λ2,ou respectively, in the presence of Laplacian noise
(ω = .707). The solid curve represents the Laplacian
detector (p = 1), and the dash-dotted curve represents
the Gaussian detector (p = 2). The results are a clear
indication of the deleterious effect on performance of the
widely held practice of assuming Gaussian noise and us-
ing Gaussian based statistics.

5 Conclusion

We design non-Gaussian matched subspace detectors
that are robust to interferents whose subspace is un-
known. To do so, we formulate a hypothesis test that is
insensitive to unlearned interferents and simultaneously
sensitive to the signal of interest. In particular, general-
ized likelihood ratio (GLR) detectors are derived for the
family of Generalized Gaussian density functions, which
includes the Gaussian and Laplacian pdf’s. Simulation
based results are shown here, and these detectors are
successfully applied to functional magnetic resonance
images (fMRI) in [1].
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