
A NEW NEURAL NETWORK PRUNING METHOD BASED ON THE
SINGULAR VALUE DECOMPOSITION AND THE WEIGHT INITIALISATION (1)

S. Abid* : IEEE Student Member - F. Fnaiech* : Senior Member IEEE- M.Najim** : Fellow IEEE

*Laboratoire CEREP (CEntre de REcherche en Productique)
E.S.S.T.T. 5 Av. Taha Hussein 1008 Tunis - TUNISIA.

Tel (216) 1 503 837 - Fax (216) 1 391 166, Email : Sab.Abid@esstt.rnu.tn; Farhat.Fnaiech@esstt.rnu.tn
**Equipe Signal & Image: Avenue du Dr. Albert Schweitzer - Domaine Universitaire. BP 99.

33402 Talence Cedex -FRANCE, Email : najim@goelette.tsi.u-bordeaux.fr

(1) This paper has been supported partially by a French/Tunisian project CMCU #00F1125

Abstract
In this paper, we present an efficient procedure to
determine the optimal hidden unit number of a
feed-forward multi-layer Neural Network (NN)
using the singular value decomposition (SVD)
taking into account the function to be approximated
by the NN and the initial values of the updating
weights. The SVD is used to identify and eliminate
redundant hidden nodes. Minimizing redundancy
gives smaller networks, producing models that
generalize better and thus eliminate the need of
using cross-validation to avoid overfitting. Using
this procedure we obtain a final model with fewer
adjustable parameters and more accurate
predictions than a network model with a fixed, a
priori determined, size. We show these
performances by applying this procedure to several
problems such as function approximation and image
recognition.

Keywords : multi-layer Neural Network (NN);
Singular Value Decomposition (SVD); redundant
neuron; NN size;

1. INTRODUCTION
The problem of determining the proper size of a
multi-layer NN is recognized to be crucial,
especially for its practical implications in such
important issues as learning and generalization
[5][6][7]. In general, it is desirable to have small
NN size. This is true because increasing the
number of hidden units in a multi-layer NN may
improve its approximation quality with respect to its
training patterns, but not always improves its
generalization behavior to new patterns. An
improperly chosen configuration may result in
either overfitting of the training patterns or
nonconvergence in learning. One way to improve
the generalization behavior of a NN is to reduce its
number of hidden units when convergence is
reached. In addition, small NN are faster when
deployed. In the literature many methods are used

to optimize the NN structure. These methods
include destructive, constructive, genetic -algorithm
[8].
Destructive or pruning methods start from a fairly
large network and dynamically remove unimportant
connections or units, whereas constructive or
growth methods start from a small network and
dynamically grow the network. Since the latter
usually require fewer computations, extensive
research has been carried out in this area.
Another class of dynamic multi-layer NN is block-
feedback NN that can be learned incrementally
[11].
Moreover the majority of the researchers always
ignore the problem of the dependence, of the
optimal NN size, on the weight initialization. In this
work and in [3], we demonstrate that the optimal
NN size is highly dependent on the weight
initialization. This problem is treated in section 3.
In this work, we propose a SVD pruning algorithm
for network training and size selection that, starting
from an arbitrary NN size, automatically
determines the optimal number of hidden nodes,
given the available data. Gradient descent approach
is used to determine the internal weights of the net
and the SVD is used to identify redundant hidden
nodes. These nodes are eliminated and the reduced
size network is retrained until convergence. The
SVD procedure has the virtue of being both simple
and rigorous.
The use of the SVD for optimizing the NN
structure was proposed in [4]. In their paper [4],
the authors consider a linear output multi-layer NN.
This work is a development of the SVD algorithm
to a multilayer NN with sigmoidal nonlinear
neurons. Moreover we demonstrate that the
optimal size of a multilayer NN depends on the
initial choice of the synaptic coefficients.
This paper is organized as follows. In section 2 we
present the SVD pruning algorithm, where in
section 3, we discuss the problem of the initial
weight NN size dependence. In section 4 we

present some simulation results and comparisons
between pruned networks and networks trained
with the standard back-propagation algorithm.
Finally in section 5, we give the main conclusions of
the paper.

2. SVD PRUNING ALGORITHM
For simplicity purposes we shall suppose that the
NN contains one output layer with n2 neurons, one
hidden layer with n1 neurons and n0 input units.
However, without loss of generality, the pruning
algorithm can be applied to multi-hidden layers.
For the hidden layer we have:

ue v x V Xk ki i

i

n

k

T= =
=
∑

0

0

 and y f uek k= () (1)

where 1,,1 nk L= and X is the input vector

given by T

nxxxX][010 L=

For the output layer:

us w y W Yk ki i

i

n

k

T= =
=
∑

0

1

 and z f usk k= () (2)

where 2,,1 nk L= and Y is the input vector to

the output layer given by T

nyyyY][110 L= .

0x and 0y are the bias terms and v wki ki, are the

linkweights to the corresponding k th neuron. f is a
nonlinearity assumed to be a sigmoidal function.
We define the weight matrixes for the hidden and
the output layers as :

[]121 ,,, nVVVV L= where

[]Tiniii vvvV 010 ,,, L= (3)
[]221 ,,, nWWWW L= where

[]Tiniii wwwW 110 ,,, L= (4)
The SVD alternates between estimation of the
weights from input to hidden nodes V and the
weights from hidden to output nodes W in a two
stage process as follows: 1) given a set of values
for the W coefficients, the weights V are adjusted
using a nonlinear optimization method to minimize
the sum of squared errors. During this stage the
coefficients W remain fixed. 2) given the new
values for the weights from input to hidden nodes,
the outputs of the hidden nodes are calculated.
These outputs, which are nonlinear transformations
of the inputs, are used to calculate a new set of
coefficients W using linear least squares by
inverting f in (2). Use of least squares techniques,
more specifically SVD, allows well-developed
linear methods to be applied to the training and
selection of appropriate size of NN. We use SVD

as an explicit model selection method (i.e., to
identify and remove redundant hidden nodes during
network training) and not a priori. The advantage
of such an approach is that it adapts the model
structure (number of hidden units) to the available
data and avoids the need for potentially expensive
cross-validation procedures, thus allows all
available data to be used for training.

2.1. Updating the hidden weights
The steepest descent method is used to adjust the
hidden weights V. For a detailed discussion on the
intuition and theoretical derivation of the method
see [1][2].
In our formulation, the objective function is the sum
of squared errors:

E z dzk k
k

n

p

N

= −
==

∑∑1
2

2

11

2

() (5)

where the sum is over all N training examples and
n2 outputs; dzk represents the desired NN
response for the k th output neuron. Iterations
continue until the change in the objective function
between iterations is below a prespecified threshold
or the gradient is exactly zero, which implies that
the optimum has been reached.

2.2. Singular Value Decomposition.
Once the hidden weights V are Known, the output
of each hidden node for each input pattern p can
be calculated. This gives an N n× 1 matrix. Then,
we can formulate the following linear least squares
problem: Calculate Wj such that the residual

E AW ldzj j= −
2
 (6)

is minimized, where A is the N n× 1 matrix having
as columns the outputs of each hidden node for all
N input vector, and ldz is the linear desired output
vector defined as:

ldz f dz= −1 () (7)
This linear least squares formulation can be
obtained for all n2 responses.
The basic premise behind SVD is that a general
N n× 1 matrix can be decomposed in three
matrices R, S, and T as

A R S T T= . . (8)

where R is an NN × column-orthogonal matrix,
S is an N n× 1 diagonal matrix with positive or
zero elements and T is an n n1 1× orthogonal
matrix. The elements of the S matrix are called the
singular values of the A matrix. The matrix A may

be singular (or nearly singular) because of row or
column degeneracies. Column degeneracies imply
that the hidden node outputs are correlated. This
means that the problem is overdetermined with the
given set of hidden nodes; i. e., the available data
cannot help distinguish between them. In practice,
it corresponds the presence of redundant hidden
nodes.
This observation motivates the use of SVD as the
least squares solution technique in our network
training method. The development of a model
network involves choice of a priori fixed number
(typically large) of hidden nodes, with the hope that
they will be adequate to approximate the unknown
underlying function. However, it may well be the
case that this initial model is over-parameterized
(redundant). Redundant hidden nodes cause
singularities in the A matrix, which can be identified
through inspection of its singular values. A nonzero
number of small singular values indicates
redundancy in the initial choice for the number of
hidden nodes. The algorithm then eliminates these
hidden nodes and retains the "pruned" network
model.

3. DEPENDENCY OF THE OPTIMAL NN
SIZE ON THE WEIGHT INITIALIZATION

We have shown in (6) that the construction of the
A matrix depends on the initial weight selection.
Then the SVD decomposition is highly dependent
of the initial weights. For different initial weights
the element of S matrix change and the number of
small singular values change also then the
redundant hidden nodes change in
turn. This leads in the end of training
to different optimal NN sizes. Which
one of these networks is the better?
To avoid this problem we shall
search the optimal range of the initial
weights or the optimal standard
deviation for a chosen function
distribution of the initial weights. To
do so we inspect the singular values
of A for many initial weights, and
then we select the optimal range of
the initial weights that gives the
maximum number of redundant units
for removing.

4. APPLICATION EXAMPLES

The SVD pruning algorithm was
applied on two variations of a test
problem. We present in this section

the numerical results of two problems. In each
problem, we compare the performances of the
pruned neural network (PNN) with respect to the
network trained with the standard back propagation
algorithm (SBPNN). These performances are the
final hidden unit number with respect to the initial
number used for the SBPNN, the iteration number
needed for convergence for a priori chosen
threshold, and the convergence time for each
network.

4.1. Sine function approximation problem
In this application the NN has been used to
approximate the sine function of the form
f x x x() sin() ;= < <0 4π (9)

The networks contain one input unit and one output
unit. For the SBPNN we have fixed the hidden unit
number 1n at 15. This value is chosen after 50

learning trials to maximize the learning speed and
finding a good initial weight sets. By application of
the SVD algorithm and the research of an optimal
range for the initial weight coefficients we can
reduce the hidden unit number 1n to 11. Table 1

resumes the comparison results of this problem.
It is clear that the SVD algorithm removes
successfully the redundent neurons and improves
the performances of the neural network.
4.2. Pattern recognition problem
The second experiment we have considered is the
training of a NN to recognize patterns presented to
its input given in Figure 1. Although many different
experiments were performed with various data sets

1n Convergenc

e iteration
number

Convergenc
e time (s)

SBPNN 38 632 34.25

PNN 29 479 29.36

Table 2: Comparison results of the performances of the PNN
with respect to the SBPNN for the pattern recognition problem

1n Convergenc

e iteration
number

Convergenc
e time (s)

SBPNN 15 2238 12.13

PNN 11 1776 10.88

Table 1: Comparison results of the performances of the PNN
with respect to the SBPNN for the sine function approximation problem

and different network structures, we present here
only a limited number because of space
considerations.
The input pixels are set to a level of -0.5 or +0.5. It
is important to note that these levels are considered
to be analog values rather than digital binary
values. Although, we present here experiments
with patterns of two levels, similar results are
obtained with patterns of various gray levels.
The output is likewise treated as analog signal..
Therefore, the network is considered trained only
when the output agrees in sign with the desired
output but also in absolute value.
The networks contain 49 inputs, 4 output units. For
the SBPNN, we have fixed 1n at 38 in the same

manner that in the first application. Table 2 shows
the comparison results.

5. CONCLUSION
In this paper we have proposed an efficient
procedure to determine the optimal hidden unit
number of a feed-forward multilayer NN. This
procedure is based on the SVD and takes into
account the function to be approximated and the
initial values of the updating weights. We have
shown that the optimal NN size is highly dependent
on the initial synaptic coefficient set. The new
proposed algorithm requires less number of neurons
and less number of iterations than the standard
back propagation algorithm for a suitable choice of
the initial weights.

Figure 1: 7x7 patterns used for training

6. REFERENCES

[1] S. Abid ; F. Fnaiech and M. Najim, ''A fast
Feed-Forward Training Algorithm Using A
Modified Form Of The Standard Back-Propagation
Algorithm'' IEEE Transactions on Neural
Network . pp. 424-430, March 2001.

[2] S. Abid F. Fnaiech and M. Najim, ''Evaluation
Of The Feedforward Neural Network Covariance
Matrix Error'' IEEE International Conference on

Acoustic Speech and Signal Processing
(ICASSP'2000) : June 5-9, Istanbul, Turkey.

[3] F.Fnaiech, N. Fnaiech and M. Najim ''A new
feedforward neural network hidden layer's neurons
pruning algorithm'' IEEE International
Conference on Acoustic Speech and Signal
Processing (ICASSP'2001) : Salt-lake-city, USA.

[4] D. C. Psichogios and L. H. Ungar, "SVD-NET:
An algorithm that automatically selects network
structures" IEEE Trans. on Neural Networks,
Vol. 5, No. 3, pp. 513-551, May 1994.

[5]N. Murata, S. Yoshizawa and S. I. Amari,
"Network information criterion determining the
number of hidden units for an artificial neural
network model" IEEE Trans. on Neural
Networks, Vol. 5, No. 6, pp. 865-871, Nov. 1994.

[6] C. C. Teng and B. W. Wah, "Automated
learning for reducing the configuration of a
feedforward neural network" IEEE Trans. on
Neural Networks, Vol. 7, No. 5, pp. 1072-1085,
Sep. 1996.

[7] G. Castellano, A. M. Fanelli and M. Pelillo, "An
iterative pruning algorithm for feedforward neural
networks" IEEE Trans. on Neural Networks, Vol.
8, No. 3, pp. 519-531, May 1997.

[8] R. Setino and L. C. K. Hui, "Use of quasi-
Newton method in a feedforward neural network
construction algorithm" IEEE Trans. on Neural
Networks, Vol. 6, No. 1,pp. 273-277, Jan. 1995.

[9] B. Hassibi and D. G. Stork, "Second order
derivatives for network pruning: Optimal brain
surgeon," in advances in Neural Information
Processing systems 5, S. Hanson, J. Cowan, and
C. Giles, Eds. San Mateo, CA: Morgan Kaufmann,
1993.

[10] M. C. Moze and P. Smolensky, " Using
relevance to reduce network size automatically,'
Connect. Sci., vol. 1, No. 1, pp. 3-16, 1989.

[11] S. Santini, A. D. Bimbo and R. Jain, "Block
structured recureent neural networks," IEEE
Trans. on Neural Networks, Vol. 8, No. 1, pp.
135-147, 1995

