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Abstract 
In this paper, we present an efficient procedure to 
determine the optimal hidden unit number of a 
feed-forward multi-layer Neural Network (NN) 
using the singular value decomposition (SVD) 
taking into account the function to be approximated 
by the NN and the initial values of the updating 
weights. The SVD is used to identify and eliminate 
redundant hidden nodes. Minimizing redundancy 
gives smaller networks, producing models that 
generalize better and thus eliminate the need of 
using cross-validation to avoid overfitting. Using 
this procedure we obtain a final model with fewer 
adjustable parameters and more accurate 
predictions than a network model with a fixed, a 
priori determined, size. We show these 
performances by applying this procedure to several 
problems such as function approximation and image 
recognition. 
 
Keywords  : multi-layer Neural Network (NN); 
Singular Value Decomposition (SVD); redundant 
neuron; NN size; 
 

1. INTRODUCTION 
The problem of determining the proper size of a 
multi-layer NN is recognized to be crucial, 
especially for its practical implications in such 
important issues as learning and generalization 
[5][6][7]. In general, it is desirable to have small 
NN size. This is true because increasing the 
number of hidden units in a multi-layer NN may 
improve its approximation quality with respect to its 
training patterns, but not always improves its 
generalization behavior to new patterns. An 
improperly chosen configuration may result in 
either overfitting of the training patterns or 
nonconvergence in learning. One way to improve 
the generalization behavior of a NN is to reduce its 
number of hidden units when convergence is 
reached. In addition, small NN are faster when 
deployed. In the literature many methods are used 

to optimize the NN structure. These methods 
include destructive, constructive, genetic -algorithm 
[8]. 
Destructive or pruning methods start from a fairly 
large network and dynamically remove unimportant 
connections or units, whereas constructive or 
growth methods start from a small network and 
dynamically grow the network. Since the latter 
usually require fewer computations, extensive 
research has been carried out in this area. 
Another class of dynamic multi-layer NN is block-
feedback NN that can be learned incrementally 
[11]. 
Moreover the majority of the researchers always 
ignore the problem of the dependence, of the 
optimal NN size, on the weight initialization. In this 
work and in [3], we demonstrate that the optimal 
NN size is highly dependent on the weight 
initialization. This problem is treated in section 3. 
In this work, we propose a SVD pruning algorithm 
for network training and size selection that, starting 
from an arbitrary NN size, automatically 
determines the optimal number of hidden nodes, 
given the available data. Gradient descent approach 
is used to determine the internal weights of the net 
and the SVD is used to identify redundant hidden 
nodes. These nodes are eliminated and the reduced 
size network is retrained until convergence. The 
SVD procedure has the virtue of being both simple 
and rigorous. 
The use of the SVD for optimizing the NN 
structure was proposed in [4]. In their paper [4], 
the authors consider a linear output multi-layer NN. 
This work is a development of the SVD algorithm 
to a multilayer NN with sigmoidal nonlinear 
neurons. Moreover we demonstrate that the 
optimal size of a multilayer NN depends on the 
initial choice of the synaptic coefficients. 
This paper is organized as follows. In section 2 we 
present the SVD pruning algorithm, where in 
section 3, we discuss the problem of the initial 
weight NN size dependence. In section 4 we 



present some simulation results and comparisons 
between pruned networks and networks trained 
with the standard back-propagation algorithm. 
Finally in section 5, we give the main conclusions of 
the paper. 
 

2. SVD PRUNING ALGORITHM 
For simplicity purposes we shall suppose that the 
NN contains one output layer with n2 neurons, one 
hidden layer with n1 neurons and n0 input units. 
However, without loss of generality, the pruning 
algorithm can be applied to multi-hidden layers. 
For the hidden layer we have:  
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For the output layer: 
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where  2,,1 nk L=  and Y is the input vector to 

the output layer given by T
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0x  and 0y  are the bias terms and v wki ki,  are the 

linkweights to the corresponding k th neuron. f is a 
nonlinearity assumed to be a sigmoidal function. 
We define the weight matrixes for the hidden and 
the output layers as : 
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The SVD alternates between estimation of the 
weights from input to hidden nodes V and the 
weights from hidden to output nodes W in a two 
stage process as follows: 1) given a set of values 
for the W coefficients, the weights V are adjusted 
using a nonlinear optimization method to minimize 
the sum of squared errors. During this stage the 
coefficients W remain fixed. 2) given the new 
values for the weights from input to hidden nodes, 
the outputs of the hidden nodes are calculated. 
These outputs, which are nonlinear transformations 
of the inputs, are used to calculate a new set of 
coefficients W using linear least squares by 
inverting f in (2). Use of least squares techniques, 
more specifically SVD, allows well-developed 
linear methods to be applied to the training and 
selection of appropriate size of NN. We use SVD 

as an explicit model selection method (i.e., to 
identify and remove redundant hidden nodes during 
network training) and not a priori. The advantage 
of such an approach is that it adapts the model 
structure (number of hidden units) to the available 
data and avoids the need for potentially expensive 
cross-validation procedures, thus allows all 
available data to be used for training. 
 
2.1. Updating the hidden weights 
The steepest descent method is used to adjust the 
hidden weights V. For a detailed discussion on the 
intuition and theoretical derivation of the method 
see [1][2]. 
In our formulation, the objective function is the sum 
of squared errors:  
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where the sum is over all N training examples and 
n2  outputs; dzk  represents the desired NN 
response for the k th output neuron. Iterations 
continue until the change in the objective function 
between iterations is below a prespecified threshold 
or the gradient is exactly zero, which implies that 
the optimum has been reached. 
 
2.2. Singular Value Decomposition. 
Once the hidden weights V are Known, the output 
of each hidden node for each input pattern p can 
be calculated. This gives an N n× 1  matrix. Then, 
we can formulate the following linear least squares 
problem: Calculate Wj  such that the residual  

E AW ldzj j= −
2
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is minimized,  where A is the N n× 1  matrix having 
as columns the outputs of each hidden node for all 
N input vector, and ldz is the linear desired output 
vector defined as:   

ldz f dz= −1 ( )      (7) 
This linear least squares formulation can be 
obtained for all n2  responses. 
The basic premise behind SVD is that a general 
N n× 1  matrix can be decomposed in three 
matrices R, S, and T as 

A R S T T= . .      (8) 

where R is an  NN ×  column-orthogonal matrix, 
S is an  N n× 1  diagonal matrix with positive or 
zero elements and T is an  n n1 1×  orthogonal 
matrix. The elements of the S matrix are called the 
singular values of the A matrix. The matrix A may 



be singular (or nearly singular) because of row or 
column degeneracies. Column degeneracies imply 
that the hidden node outputs are correlated. This 
means that the problem is overdetermined with the 
given set of hidden nodes; i. e., the available data 
cannot help distinguish between them. In practice, 
it corresponds the presence of redundant hidden 
nodes. 
This observation motivates the use of SVD as the 
least squares solution technique in our network 
training method. The development of a model 
network involves choice of a priori fixed number 
(typically large) of hidden nodes, with the hope that 
they will be adequate to approximate the unknown 
underlying function. However, it may well be the 
case that this initial model is over-parameterized 
(redundant). Redundant hidden nodes cause 
singularities in the A matrix, which can be identified 
through inspection of its singular values. A nonzero 
number of small singular values indicates 
redundancy in the initial choice for the number of 
hidden nodes. The algorithm then eliminates these 
hidden nodes and retains the "pruned" network 
model.   
 

3. DEPENDENCY OF THE OPTIMAL NN 
SIZE ON THE WEIGHT INITIALIZATION 

We have shown in (6) that the construction of the 
A matrix depends on the initial weight selection. 
Then the SVD decomposition is highly dependent 
of the initial weights. For different initial weights 
the element of S matrix change and the number of 
small singular values change also then the 
redundant hidden nodes change in 
turn. This leads in the end of training 
to different optimal NN sizes. Which 
one of these networks is the better? 
To avoid this problem we shall 
search the optimal range of the initial 
weights or the optimal standard 
deviation for a chosen function 
distribution of the initial weights. To 
do so we inspect the singular values 
of A for many initial weights, and 
then we select the optimal range of 
the initial weights that gives the 
maximum number of redundant units 
for removing. 
 
4. APPLICATION EXAMPLES 

The SVD pruning algorithm was 
applied on two variations of a test 
problem. We present in this section 

the numerical results of two problems. In each 
problem, we compare the performances of the 
pruned neural network (PNN) with respect to the 
network trained with the standard back propagation 
algorithm (SBPNN). These performances are the 
final hidden unit number with respect to the initial 
number used for the SBPNN, the iteration number 
needed for convergence for a priori chosen 
threshold, and the convergence time for each 
network.  
 
4.1. Sine function approximation problem 
In this application the NN has been used to 
approximate the sine function of the form 
f x x x( ) sin( ) ;= < <0 4π    (9) 

The networks contain one input unit and one output 
unit. For the SBPNN we have fixed the hidden unit 
number 1n  at 15. This value is chosen after 50 

learning trials to maximize the learning speed and 
finding a good initial weight sets. By application of 
the SVD algorithm and the research of an optimal 
range for the initial weight coefficients we can 
reduce the hidden unit number 1n  to 11. Table  1 

resumes the comparison results of this problem. 
It is clear that the SVD algorithm removes 
successfully the redundent neurons and improves 
the performances of the neural network. 
4.2. Pattern recognition problem 
The second experiment we have considered is the 
training of a NN to recognize patterns presented to 
its input given in Figure 1. Although many different 
experiments were performed with various data sets 

 
1n  Convergenc

e iteration 
number 

Convergenc
e time (s) 

SBPNN 38 632 34.25 

PNN 29 479 29.36 
 

Table 2: Comparison results of the performances of the PNN  
with respect to the SBPNN for the pattern recognition problem 

 
1n  Convergenc

e iteration 
number 

Convergenc
e time (s) 

SBPNN 15 2238 12.13 

PNN 11 1776 10.88 
 

Table 1: Comparison results of the performances of the PNN  
with respect to the SBPNN for the sine function approximation problem 



and different network structures, we present here 
only a limited number because of space 
considerations. 
The input pixels are set to a level of -0.5 or +0.5. It 
is important to note that these levels are considered 
to be analog values rather than digital binary 
values. Although, we present here experiments 
with patterns of two levels, similar results are 
obtained with patterns of various gray levels. 
The output is likewise treated as analog signal.. 
Therefore, the network is considered trained only 
when the output agrees in sign with the desired 
output but also in absolute value. 
The networks contain 49 inputs, 4 output units. For 
the SBPNN, we have fixed 1n  at 38 in the same 

manner that in the first application. Table 2 shows 
the comparison results.   
 

5. CONCLUSION 
In this paper we have proposed an efficient 
procedure to determine the optimal hidden unit 
number of a feed-forward multilayer NN. This 
procedure is based on the SVD and takes into 
account the function to be approximated and the 
initial values of the updating weights. We have 
shown that the optimal NN size is highly dependent 
on the initial synaptic coefficient set. The new 
proposed algorithm requires less number of neurons 
and less number of iterations than the standard 
back propagation algorithm for a suitable choice of 
the initial weights. 
 

 
Figure 1: 7x7 patterns used for training 
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