
A Robust Array Signal Processing Maximum Likelihood

Estimator Based on Sub-Gaussian Signals

Panayiotis G. Georgiou∗ and Chris Kyriakakis
georgiou@sipi.usc.edu ckyriak@imsc.usc.edu

ABSTRACT

In this work we investigate an alternative to
the stochastic Gaussian Maximum Likelihood (ML)
method that deals with sub-Gaussian signals. The pro-
posed system is one where the sources are stochastic
and Gaussian and the transfer medium is varying in a
highly impulsive manner, introducing the sub-Gaussian
nature at the receiver. Alternatively, the impulsive
transformation to the signals can be viewed as part of
the source model, creating a multivariate source signal
whose components can not be independent, and is of
impulsiveness equal to the one of the Cauchy distribu-
tion.
The Lévy α-stable distribution, of characteristic expo-
nent 0.5 and index of symmetry 1, is used together
with the multivariate Gaussian density to model the
signal, and the resulting probability density function
is derived. Based on this density, the stochastic ML
estimator is formulated. A separable solution of the
estimator is given, and simulations demonstrating the
performance gains relative to the Gaussian-based ML
estimator are provided.

1 Introduction

The Gaussian distribution has traditionally been the
most widely accepted distribution and used, as a rule,
as a realistic model for various kinds of noise. In recent
years however, there has been a tremendous interest in
the class of α-stable distributions, which are a gener-
alization of the Gaussian distribution, but are able to
model a wider range of phenomena and can be of a more
impulsive nature. In fact, the Gaussian is the least im-
pulsive α-stable distribution, while other widely known
distributions of the α-stable class are the Cauchy and
the Lévy.
In 1991, Cambanis, Samorodnitsky, and Taqqu [1]

gave a review of α-stable processes from a statistical
point of view. Several other statisticians have provided
valuable work in the theory of α-stable distributions.
In 1993, Nikias and Shao gave an introductory review
of α-stable distributions from a statistical signal pro-
cessing viewpoint that was followed by a book from the
same authors in 1995 [2].
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Alpha-stable distributions have been used to model
diverse phenomena such as random fluctuations of
gravitational fields, economic market indices, and radar
clutter. These authors have presented in previous work
[3] the appropriateness of the α-stable distributions
for modeling noises encountered in audio environments
and presented a time delay estimation method for local-
ization of speech sources. Tsakalides and Nikias [4, 5]
gave Maximum Likelihood (ML) and Multiple Signal
Classification (MUSIC) based localization algorithms
for uncorrelated, impulsive signals. In this paper we
will present a ML algorithm for signals that are not
independent and impulsive in nature.

1.1 Sub-Gaussian Random Variables

Sub-Gaussian distributions are a special case of α-
stable random processes. A Sub-Gaussian random vec-
tor X can be defined as a random vector with charac-
teristic function of the form

ϕ(u) = exp

(

−1

2

[

u
T
Ru

]α/2
)

(1)

where R is a positive-definite matrix, and the charac-
teristic exponent satisfies 1 < α ≤ 2.
Sub-Gaussian processes are variance mixtures of

Gaussian processes [6]. Specifically, X(t) is sub-Gaus-
sian with parameter α if S(t) is a positive stable process
with characteristic exponent α/2 (i.e., S is α/2-stable
random variable completely skewed to the right) and

dispersion cos
(

πα
4

)2
, and Y (t) is a multivariate Gaus-

sian process independent of S, and:

X(t) = S(t)1/2Y (t) (2)

2 Maximum Likelihood Estimation

The transmitted signals in this case are assumed to be
stochastic, and as such, the parameters of interest will
be their statistics and Directions-of-Arrival (DOA’s).
Despite the wide variety of optimization criteria used
for parameter estimation, the optimal detector is char-
acterized by a single result: the Maximum Likelihood
ratio test, which was also one of the first methods to
be applied in the area of array signal processing [7]. In
this paper, we deal exclusively with Stochastic ML es-
timation where the signals are assumed to be random
rather than of a deterministic nature.
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Figure 1: A multivariate Gaussian signal, corrupted by
multiplicative Lévy noise, is then transformed through
a set of delays to the receiving end of the array. The
additive noise can be generated from the same Lévy
process to make it jointly sub-Gaussian with the signal.

We assume a scenario under which there are κ
sources received by an array of ρ sensors. The transfer
function each signal undergoes while traveling to the
array can be modeled as an attenuation and a delay.
The attenuation will be considered the same at all sen-
sors under the assumption that the sources are in the
far field of the array. These transfer functions are

ar,k = e−iωτr,k , r = 1 . . . ρ and k = 1 . . . κ (3)

where τr,k is the delay of the signal (of source k) re-
ceived at sensor r relative to the first sensor.
We assume the sources to be in the far field and

hence, τr,k = τr(θk), and it is also clear that if we are
dealing with a linear array τr,k = (r − 1) · τ1(θk).
We denote the vector of the medium transformations

for source k by ak = [a1,k a2,k . . . aρ,k ]T .
The array’s input at a single sensor r is

xr(t) =

κ
∑

k=1

ar,k · sk(t) + nr(t) (4)

and therefore, the array’s input vector is

x(t) = A · s(t) + n(t) (5)

3 Signal Model for ML Estimation

An alternative to modeling the signal as Cauchy dis-
tributed, which was pursued by [4], is using a Sub-
Gaussian signal of equal impulsiveness. For this pur-
pose we can use a distribution of impulsiveness α = 0.5,
which is completely skewed to the positive axis to-
gether with a multivariate Gaussian density. Fortu-
nately, there is one distribution with a closed form ex-
pression, the Lévy distribution, which satisfies exactly
these properties (also referred to as a Paretto type 5
distribution with an index of symmetry β = 1 and char-
acteristic exponent α = 0.5). Fig. 1 gives a top level
description of the problem, source, and noise signals:
The Gaussian density is:

f(V) =

tM
∏

t=t1

1

πρ |R| exp
(

−v†(t)R−1
v(t)

)

(6)

where

v = v(t1), v(t2), . . . , v(tM ) (7)

and the Lévy distribution [8] is given by:

f(u) =

{

u−
3

2 e
− 1

4u

2
√
π

if u > 0

0 if u < 0
(8)

So from eq. (2), the signal s = [s1 . . . sκ]
T is:

sk(t) = uk(t)
1

2 · vk(t) = wk(t) · vk(t) (9)

We can show [9] that the distribution can be given
by:

f(s) =
1

2
√
π πκ |Σ| ·

[

1/4 + s
†(t)Σ−1

s(t)
]−1

(10)

Note that if the Gaussian random variable was one
dimensional and real, then under the choice of σ =

√
2

the sub-Gaussian r.v. would revert to the Cauchy as
expected.

f(s) =
1

2
√
2πσ

·
[

1/4 +
s2

2σ2

]−1

4 Maximum Likelihood Estimator

Now the signal x = [x1 . . . xρ]
T is of the form:

xr(t) = y(t)
1/2 · zr(t) (11)

where again, as in the transmitted signal case, the re-
ceived signal is sub-Gaussian
It is therefore straightforward to show that the re-

ceived signal’s z statistics will be relating to those of
the transmitted signal v by1:

R = AΣvA
† + σ2

nIρ (12)

Therefore, the maximum likelihood estimator is

[Σ̂, θ̂] = argmax
Σ̂,θ̂

tM
∏

t=t1

1/2√
π πρ |R| ·

[

x
†(t)R−1

x(t) +1/4

]−1

To simplify, take the log
e

[Σ̂, θ̂] = argmin
Σ̂,θ̂

tM
∑

t=t1

{

log
e
|R|

+ log
e

[

x
†(t)R−1

x(t) +1/4

]}

(13)

1With the additional assumption that the noise is a sub-Gaus-

sian process produced by the same Lévy sequence, but not neces-

sarily of the same dispersion. A scalar gain is already incorporated

in the medium transformation A that can modify the dispersion

of the Lévy process.
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5 Maximum Likelihood: A Separable Solution

5.1 Estimating the Statistics

We proceed in this case to reach an alternative min-
imization function to reduce the search space. To do
so, we follow the same procedure as in [10] (derivations
in [9]) where the ML function is minimized with respect
to the signal statistics, assuming known DOA:

ΣML =

tM
∑

t=t1

[

A
−
(

xx†

Tr
[

R−1xx†
]

+1/4

− σ2

n

)

A
−†
]

(14)

where A− =
(

A†A
)−1

A† and R−1 as defined in
eq. 15. The solution of eq. 14 can be easily found using
the numerical iteration method.

R
−1 =

1

σ2
n

{

I−A
(

ΣA
†
A+ σ2

nI
)−1

ΣA
†
}

(15)

An initial estimate of R can be used as an initial
guess and can be found from the data, using a covaria-
tion measure. Simulations will not be provided in this
paper due to length constraints, however the reader can
refer to [9].

The noise variance σ2
n can also be found, assuming

we know the number of sources and sensors, from the
ρ− κ smallest eigenvalues of R.

5.2 DOA Estimation

The above sub-section assumes that the DOA vector is
known, an issue we investigate here. Using a pseudo-
ML approach, we can express the modified ML function
irrespective of the statistics R as

θ̂ = argmin
θ̂

tM
∑

t=t1

{

log
e

[

x
†(t)R−1

x(t) +1/4

]}

(16)

where Σ can be substituted with any valid statistics
(identity matrix for instance). A search algorithm can
be used to find the solution of the above equation.

6 Simulations – DOA Estimation

Several sets of simulations need to be performed to test
the validity of the algorithm. In the following tests,
Σ = I is assumed to hold although the test matrix
had a random correlation structure, but always with
diagonal elements of dispersion equal to 1.
In all cases, the impulsiveness was kept constant

(α = 1 for cases 1 & 4 and α = 2 for 2 & 3 as described
below). The Generalized Signal-to-Noise Ratio used
below is defined as:

GSNR = 10 log
10

(

γs
γn

)

= −10 log
10

(γn) (17)

Fig. 2 shows the mean squared error and the prob-
ability of localization for the conditions described in
Fig. 1. Four cases were simulated, and in each case the
noise followed the same assumptions as the signal:

1. Exactly as per the derivation assumptions
(Fig. 2a): Received signal is sub-Gaussian, cre-
ated from a Multivariate Gaussian and a univari-
ate Lévy (can be viewed as Lévy energy fluctua-
tion). Received signal impulsiveness is α = 1.

2. The signal is a Multivariate Gaussian (Fig. 2b) and
is created from a Multivariate Gaussian (v) and a
univariate Gaussian (w). Received signal impul-
siveness is α = 2.

3. The signal is a Multivariate Gaussian (Fig. 2c) and
it undergoes no energy fluctuation (w = 1, v =
s). This conforms to the assumptions of the well
known Gaussian based ML. Clearly the received
signal impulsiveness is α = 2.

4. Finally the received signal is sub-Gaussian
(Fig. 2d), created from a Multivariate Gaussian
(v) and a Multivariate Lévy (w). In this case,
the signals can be viewed as simply Cauchy or as
Gaussian with a different Lévy energy fluctuation
for each source. Received signal impulsiveness is
α = 1.

As expected, the sub-Gaussian ML method performs
better when the derivation assumptions hold (Fig. 2a).
Likewise, when the signal is a multivariate Gaussian,
the Gaussian ML algorithm performs better (Fig. 2c).
In the cases that neither assumption holds however,

we can see how more robust the sub-Gaussian ML
method is. When the signal follows (2) (Fig. 2b),
the sub-Gaussian ML performs slightly better than the
Gaussian ML. The real benefit of the proposed ML
method can however be observed when the signals are
impulsive due to random multiplicative noise, indepen-
dent from one source to the next (Fig. 2d).

7 Conclusions

We have presented an alternative to the multivariate
Gaussian for modeling array signal processing sources,
and we have derived a ML estimator and a separable
solution for the assumed signal conditions.
The suggested model is robust and can model a va-

riety of different phenomena such as sources undergo-
ing the same fluctuation over time, or signals traveling
through a rapid varying medium. It can also allow
for sparse measurements of certain events in which the
measurement conditions might change significantly, but
uniformly for the whole array.
The proposed algorithm has also demonstrated sig-

nificant robustness in localization when tested against
different than the ideal conditions, such as those of ran-
dom gains at each source sample, which could be the
model of a non uniform and varying transport medium.
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