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ABSTRACT 
 
Current Automatic Speech Recognition (ASR) 
systems are not efficient in noisy speech conditions. 
We propose a new strategy to reinforce ASR 
robustness, based on a feedback loop from 
recognition of posteriors to signal synthesis. The key 
idea is to use phonemes’ posteriors generated by 
recognition to calculate an acoustic image (AI) at 
each frame and to calculate its correlation with the 
input signal. AI is the weighted sum phonemes clean 
speech spectrum, where weights are directly taken as 
the corresponding phonemes’ posteriors. Correlation 
between AI and the input spectrum gives a 
Recognition Index (RI). We then show how a simple 
correction function of posteriors’ distribution using 
RI improves the Word Error Rate in a continuous 
speech recognition task compared to a state of the art 
ASR system (Jrasta).  
 

1. INTRODUCTION 
 

Current Automatic Speech Recognition (ASR) 
systems are not efficient in noisy speech conditions. 
We first present various strategies proposed to 
reinforce ASR robustness (Wiener filter, multistream 
approach, enhanced decoding - see figure). Then we 
propose a new strategy based on a feedback loop 
from recognition to signal synthesis.  
The key idea is to use the recognition of phonemes to 
construct an acoustic image which is compared to the 
input signal. This derives from Gibson [1], who 
points out that information cannot be said to cause 
perception : « Perception … is never fully stimulated 
but instead can go into activity in the presence of 
stimulus information ». Some principles were 
outlined in  [7], but here we present how it can be 
successfully used for robust ASR.  
 

2. DIFFERENT ROBUST ASR STRATEGIES 
 
For more than ten years, many researchers in ASR 
systems have focused on a weighting approach. 
Generally they enhance reliable features [2,3] or 
phonemes estimates [3,4,5,6]. We show in this 
section that they can be classified as “forward” 
systems, but that one can also elaborate “backward” 
systems as introduced in [7]. 
First, the Wiener approach can be represented by 
path 1 in figure 1, using Signal to Noise Ratio (SNR) 
information. But path 1 also represents the weighting 
approach used in general multi-stream ASR. Another 
technique consists of weighting the estimates after 
recognition based on the SNR: this is represented by 
path 2. In that case, each stream feeds one expert 
recognizer. Their estimates are combined through a 
fusion process and sent to the decoder. Depending on 
their SNR, some streams are best suited for the 
phoneme transmission. It is then interesting to 
overweight the best stream at a particular time during 
the fusion process. Results using audio and visual 
modalities [3,4,5] demonstrate the significant 
advantage of the weighted multi-stream approach in 
adverse conditions.  
We see that path 1 and 2 feed the system from the 
SNR, and are thus classified as forward systems.  
 
Another kind of system relies on the estimation of 
the quality of the phonemes estimates, which we call 
the Posterior to Noise Ratio (PNR) [3,10,11]. 
Therefore, after the recognition step, the PNR 
estimation feeds into the fusion of estimates [11] 
(path 3 in figure 1) or features extraction (path 4) 
process. 
In this paper, we present a new method for 
estimating the PNR using a “Proactive” approach or 
feedback loop represented by path 4 in figure 1. 
 



 

 
 
Figure 1: FOUR DIFFERENT ASR STRATEGIES.  
We represent elements of any ASR (here with n 
streams) : features extraction, expert recognition 
and fusion of their estimates, and finally the decoder 
and word generation. One can investigate four 
different correction or weighting strategies through 
the four paths described below. 
Path 1: Wiener filtering using SNR estimation. 
Path 2: SNR estimation can be used to control the 
fusion of different experts. 
Path 3: The phonetic context can be used during 
expert fusion. 
Path 4: feedback loop: the “Proactive ASR”. We 
build an Acoustic Image (AI) in each stream. 
Correlation measure between PSD(AI) and the input 
frame’s PSD is correlated with the quality of 
estimates. This information can be used during the 
extraction process or passed directly to the fusion 
process (3). One can also use path 4 in a mono-
stream ASR. 
 
3. RELIABILITY AND WEIGHT ESTIMATION 
 
Usually weights are estimated for path 1 and 2 from 
the SNR step, derived from speech characteristics 
[3,4]. In path 3, the entropy of posteriors’ 
distribution or mapping functions can be used [3].  
In our approach, which follows path 4, we propose to 
derive these weights or Recognition Indices (RI) 
from a correlation measure between the input signal 
X and an Acoustic Image constructed from the 
estimates of phonemes P(qk|X), as introduced in [7], 
and we show how this information can be integrated 
into a simple mono-stream ASR. 

The Feedback loop consists of building an Acoustic 
Image (AI) in each stream. Useful information can 
be extracted in path 4 if PSD(AI) and the input 
frame’s PSD is correlated with the quality of 
estimates. 
Therefore we use a Phoneme to Power Spectrum 
Density (PSD) mapping.  
Let PSDm(k) = the mean PSD of phoneme k over the  
segmented training set. 
Then we calculate the PSD(AI(t)) for frame at time t: 
 

PSD( AI(t) ) = Σ k P(qk | X(t)) * PSDm(k) 
 

Then we directly calculate the Recognition Indice: 
 

RI(t) = Correlation( PSD(X(t)) , PSD(AI(t)) ) 
 

Results (see database reference in section 5) with 
0dB Gaussian White noise show a good anti-
correlation between RI and KullbackLeibler (dKL) 
distances of the phonemes’ estimates with the target 
posteriors distribution (p(qk)=1 for the target 
phoneme, else 0). This correlation is -0.68 for the 
full spectrum. We confirm then that the larger the 
distance is, the lower the RI is. More correlation 
results are discussed later in section 6. 
 

4. POSTERIORS ENHANCEMENT 
 
We have seen in the previous section that we can 
calculate a quality factor RI of posterior distribution 
based on the KL distance. This quality factor is also 
correlated with the value of the Maximum a 
Posteriori (MAP) value. The higher (lower) the MAP 
value is, the better (worse) the recognition is.  
As shown in figure 1, this information can then be 
passed directly to fusion process (path 3). 
It is then intuitive to weight exponentially the 
posteriors frame value with their quality factor RI(t). 
Therefore we take : 
 
P’(qk | X(t)) = P(qk | X(t)) ^ (RI(t) ^ N) 
 
Then the P’ posteriors are normalized and given to 
the decoder. N is an empirical factor which 
modulates the effect of the RI. Since the RI’s 
confidence fluctuates, the best results are obtained 
using a nonlinear RI function. Therefore, we take 
RI^N. We tested N=1,2,3,4,5,6,7,8,9. As discussed 
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in the next section, the best results have been 
obtained using N = 5. 
 

5. WORD RECOGNITION RESULTS 
 
Tests were done on 200 utterances from the Numbers 
95 database. NB95 is composed of multi-speaker, US 
English, free-format numbers telephone speech, with 
around 50 words and 27 phonemes. We used 128 ms 
frames in full spectrum. All PSD mapping in this 
study are only 16 bins long which requires fewer 
CPU resources.  
 
Phoneme’ estimates are produced by an ANN ASR 
[3,5]. All the features are the JRASTA [8]. The 
training set is composed of 3500 utterances.  
 
Baseline tests were made with a full-band hybrid 
ASR in which neural networks with one hidden layer 
of 1700 units, using a context of 9 consecutive 
frames, generate the posterior probabilities P(qk|Xj) 
for each of 27 phonemes. During recognition, 
posterior probabilities divided by their priors, were 
passed as scaled likelihoods to a fixed parameter 
HMM for decoding. For each phoneme the HMM 
used a 1 to 3 repeated-state model. No language 
model was used. 
 
5.1 Optimisation of  factor n  
 
Since the reliability of our Recognition index 
fluctuates, it is interesting to modulate its value. We 
show in figure 2 the WER for different N factors 
from 1 to 9, on 200 noisy utterances from the NB95 
development test set, with 0dB Gaussian White 
noise.  
 
The minimum WER is 31.4% for optimal N=5, 
(baseline system is 34.4% WER). Since (RI^5) is 
nearly null (<0.01) for RI < 0.5, this means that 
(RI^N) factor is optimal for the system when RI is 
higher than  0.5. 
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Figure 2 : optimization of factor N is based on the 
minimization of WER (plain line) for different N from 
1 to 9, on 200 utterances from of the NB95 
development test set, with 0dB Gaussian White noise. 
The baseline system (dashed line) = 34.4%. The 
minimum WER  is 31.4 % for optimal N =5. 
 
 
5.2 WER results on various noise 
 
The test set is composed of 200 utterances at various 
SNR dB :-12,-6,0, 6,12,18 dB. The added noises are  
Gaussian White noise, factory noise from Noisex 
database and car noise from Daimler Benz [3]. 
Another noise set is composed of 4 limited noisy 
subbands named Bx, each 300 Hz large and centered 
in each subband (x is the subband number of Table 
2). We also use a non-stationary noise as a periodic 
mixture of these Bx : each 125 ms, x is regularly 
picked up from the sequence [1,2,3,4,4,3,2,1]. 
 
 
 GWN Fact Car  B1 B3 Nst ME 
Jrasta 38.2 37.8 33.7 26.6 30.8 90.6 42.9 
PASR 35.0 34.8 30.5 24.2 28.8 86.3 39.9 
Dwer -8.4 -7.9 -9.5 -9 -6.5 -4.7 -7 
 
Table 1 : Word Error Rate (WER) in  average on 200 
sentences * 6 levels (-12,-6,0,6,12,18 dB SNR). Col.: 
GWN: Gaussian White Noise, factory, car  noises, 
B1 (resp B3) narrow band noise in band 1 (resp B3), 
Nst : non-stationary noise, Mean WER. 
Jrasta=baseline fullband system with Jrasta 
processing. PASR = our “Pro Active” ASR system. 
Partial recognition of three subbands after exclusion 
of noisy subband 1 or 3 in the case of noise b1 or b3 
gives 22.7 or 19.0 WER. Clean baseline = 11.2% 
WER. Confidence interval at 5% for the mean.= +-
0.71 at WER=40%. In the last line, we show the 
Delta WER in %, negative in case of improvement. 



6. DISCUSSION AND CONCLUSION 
 
Future work will apply our PASR weighting strategy 
to multistream ASR. Indeed correlation with RI and 
SNR exist in sub-band analysis shown in table 2. 
Therefore backward weighting information can be 
applied to a system using multi-band or multi-stream 
weighting.  
 
 

Subband 1 2 3 4 FULL 
Hz 115 

629 
565 
1370 

1262 
2292 

2122 
3769 

115 
3769   

Corr(RI,dKL) -0.57 -0.36 -0.48 -0.33 -0.68 
 
Table 2 : Set up of the 4 subbands and the full 
spectrum in Hz (cut off 3dB) and their correlation 
between our Recognition Index (RI) and the 
KullbackLeibler (dKL) distances of the phonemes’ 
estimates with the target posteriors distribution 
(p(qk)=1 for the target phoneme, else 0). Results 
from the 200 utterances of the Numbers95 test set. 
 
 
This Proactive architecture (PASR) can be seen as a 
simple illustration of a sensory map system [9] and it 
gives new information for use in robust ASR. This 
PASR can be extended to multi-stream ASR. 
Another interesting perspective is to study the 
iterative property of the PASR system. Indeed, after 
the first loop, one can construct a new AI from the 
new estimates and reiterate the process. Another 
application of RI is to use it during the features 
extraction process. Such a system will be studied in 
future work. 
 
We have seen that ASR systems generate a lot of 
word errors in noisy conditions, and a large amount 
of the research in robust ASR is focused on the 
forward approach. Therefore we present a new kind 
of correcting/weighting strategy based on a 
backward system. Then we have shown how to 
extract relevant information and how to integrate it 
in a simple ASR system to significantly reinforce its 
robustness.  
More sophisticated systems can be based on this 
Proactive architecture, like recurrent correction, and 
will be investigate in future work. 
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