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ABSTRACT

In the past few years, particle filtering has emerged as a
powerful methodology for solving problems in communica-
tions. Many such problems can be represented as dynamic
state-space models that involve nonlinear functions and non-
Gaussian noise. These problems are very difficult to solve
with classical methods, and as an alternative approach, par-
ticle filtering is particularly attractive. In this paper we re-
view the literature of particle filtering that emphasizes appli-
cations to blind equalization, blind detection over frequency
non-selective dispersive channels, multiuser detection, and
estimation and detection of space-time trellis codes.

1 Introduction

Particle filtering has become an important methodology in
the field of statistical signal processing [8]. Although its be-
ginnings can be traced back to the fifties and its important
advances to the seventies, the signal processing community
embraced it in the early nineties. One of the main applica-
tions of this methodology has been in object tracking, but
very recently, it has also been used for solving difficult prob-
lems in communications. The main objective of this paper is
to review some of the literature on the application of particle
filtering in communications. First we provide some general
comments about particle filtering and its use in communica-
tions, and then we discuss more specifically its application
to blind equalization, blind detection over frequency non-
selective dispersive channels, multiuser detection, and esti-
mation and detection of space-time trellis codes. This review
is by no means complete. We do not address other problems
in communications where particle filtering is also used such
as tracking of nonstationary behavior of communication net-
works [7], implementation of various types of nonlinear filters
in digital receivers [1], localization and tracking of mobiles
[23], and FM demodulation [14].

2 Particle filtering in communications - general
comments

Particle filtering is used for processing of data modeled by
dynamic state-space models. In particular, a dynamic state-
space representation of data is given by a state equation
defined at time instants t = 0, 1, 2, · · · by

xt = ft(xt−1,ut) (1)
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and an observation equation,

yt = gt(xt,vt) (2)

where xt ∈ Rdx is a state vector of the model, yt ∈ Rdy is
a vector of observations, ut ∈ Rdu and vt ∈ Rdv are noise
vectors, ft : Rdx×Rdu 7→ Rdx is a system transition function,
and gt : Rdx ×Rdv 7→ Rdy is a measurement function. Given
the observations y1:t = {y1 y2 · · ·yt}, the objective is to
estimate sequentially the unobserved states xt.

There are three densities that play critical role in sequen-
tial signal processing. They are

1. the filtering density, p(xt|y1:t),

2. the predictive density, p(xt+l|y1:t), l ≥ 1, and

3. the smoothing density, p(xt|y1:T ), where T > t.

All the information about xt regarding filtering, prediction
or smoothing is captured by these densities, respectively.

The objective of tracking the above densities recursively is
often very difficult because analytical expression for updat-
ing, for example, p(xt|y1:t) from p(xt−1|y1:t−1) do not exist.
Particle filtering, which is based on the theory of sequential
importance sampling, accomplishes this by approximating
densities with discrete random measures defined by particles
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Then the statistics of any function of xt can easily be com-

puted from {x(m)
t , w

(m)
t }M

m=1. Excellent references on parti-
cle filtering are [3, 8, 9, 21].

Typically, the first step in applying particle filtering to
communications is the representation of the problem in a
form given generically by (1) and (2). To that end, it is
important to note that many processes in communications
can easily be modeled as Markovian processes as in (1).
Examples include the time variation of the coefficients of
flat-fading or frequency selective channels and symbols with
memory in coded systems. For instance, mobile channels
are in general Rayleigh fading (time-varying) channels, and
the time variation of the fading processes of the channels
are usually modeled as ARMA or AR processes. The coef-
ficients of the ARMA (AR) processes are selected to match
the physical characteristics of the channel, and the equations
that describe the variation of the channels can be given in
a state-space form. Also, the representation of single user
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systems can often be extended to incorporate multiple input
multiple output systems such as CDMA and OFDM systems.

Once the model is defined, one resorts to applications of
particle filtering. The application itself requires careful con-
sideration of various issues specific to the problem that is
addressed. Note also that the index of the observations and
the states is not always time, and that it can be, for exam-
ple, frequency or CDMA user. The states are most often the
unknown channels and the transmitted symbols.

In the applications of particle filtering in communications,
a special emphasis is given to the operation of smoothing.
Namely, the estimation of the transmitted symbols can often
be carried out with some delay, which allows for making in-
ference from the smoothing density p(xt|y1:T ), t < T [27, 28].
Procedures that rest on smoothing should have better perfor-
mance, that is, they should yield smaller BERs, especially in
cases when the signals are channel-coded or when the noise
in the communication system is colored.

3 Blind equalization

When digital symbols {bt} are transmitted over a dispersive
channel, intersymbol interference occurs and the received
sampled signal can be represented as

yt =

L−1X

k=0

bt−kht,k + vt = h>t bt + vt (3)

where yt is the received signal at time instant t, b>t =
[bt bt−1 · · · bt−L+1], h>t = [ht,0 ht,1 · · · ht,L−1] are the co-
efficients of the unknown FIR channel impulse response, L
is the length of the channel and vt is an additive noise which
is mostly considered as a zero mean Gaussian process with
a known variance σ2. The state xt here is composed of the
unknown symbols bt and the channel coefficients ht.

The objective of equalization is to estimate the transmit-
ted symbols {bt} in presence of intersymbol interference with
or without determination of the channel coefficients. In a
particle filtering context, one is interested to determine the
marginal posterior distribution of bt given all the observa-
tions up to the current time t, p(bt|y1:t). This distribution
is represented by a set of particles with their correspond-
ing weights, and the symbol with the marginal maximum
a posterior (MMAP) probability is taken as the estimated
symbol.

Several authors have addressed the problem of blind equal-
ization using particle filtering. Liu and Chen [20] considered
time-invariant channels and described the problem as blind
deconvolution. The channel coefficients are assumed to have
a Gaussian prior distribution. This formulation permits the
channel parameters to be analytically marginalized, which
allows for a direct drawing of samples from p(bt+1|b1:t, y1:t+1)
as well as evaluation of p(yt+1|b1:t, y1:t) needed for the weight
updates. The procedure is repeated M times and the M par-
ticles with their corresponding weights approximate the pos-
terior distribution p(bt+1 | y1:t+1). The MAP estimate of the
symbol bt+1 are then readily obtained from the particles and
the weights. It is to be noted that the posterior distribution
of the channel p(ht|b1:t, y1:t) is Gaussian with a mean and
covariance that are recursively updated and whose estimates
are obtained by weighted averages. A similar problem has
also been addressed in [5, 6], where the emphasis is on the
methods for fixed-lag blind equalization and the interest is
in obtaining the smoothing distribution p(bt−l | y1:t), where
l is the fixed lag.

When the additive noise of the channel is Gaussian, data
detection and channel estimation can be performed jointly
following the concept of mixture Kalman filtering (MKF)
[4]. It is to be noted that given the transmitted symbols, the
state space model becomes a linear Gaussian system and the
posterior distribution of the channel p(ht|b1:t, y1:t) remains
Gaussian for all t. This permits tracking of the channel by
Kalman filtering while particle filtering is applied to the data
detection part [10].

A strength of particle filtering is that unlike other meth-
ods it can easily be extended to non-Gaussian noises. In
[24], the additive complex noise is a mixture of K zero mean
Gaussians. There, a latent variable zt is defined to indi-
cate the distribution of vt. The procedure draws particles
from an importance function p(bt, zt|b1:t−1, z1:t−1, y1:t) that
are used for approximation of the joint posterior distribution
p(bt, zt|y1:t) from which the MAP estimates of the symbols
are obtained.

Recently, a similar treatment has been extended to OFDM
systems over frequency selective channels [28]. One impor-
tant difference with the above treatment is that the received
signal yt is considered to be an observation in frequency do-
main where the index t represents the different subcarriers.
In such systems the observed signal for all the subcarriers is
simultaneously received. In [22], the blind equilization of a
frequency selective channel is addressed for a single carrier
communication system. An important feature of the ap-
proach, shared with the MKF [4] and the OFDM receiver is
that symbol detection is carried out without explicit channel
estimation.

Blind equalization for satellite communications was con-
sidered in [19]. A dynamic state-space model provided a
description of a satellite communication system, where the
state equations are nonlinear and reflect a cascade of lin-
ear filters and a memoryless nonlinear traveling wave tube
amplifier, and the observation consists of the state variable
embedded in additive Gaussian noise. A generic particle fil-
tering detector employing the prior importance function was
proposed to combat the nonlinear distortion of the channel.

4 Blind detection over frequency non-selective
dispersive channels

Most of the applications of particle filtering in mobile com-
munications are in processing of signals transmitted over
Rayleigh fading channels. In a dynamic state space mod-
eling of the problem, ht denotes the channel coefficient, and
the state equation reflects the statistics of the underlying
Rayleigh fading channels which are usually described by the
Jakes’ model. Moreover, since distortion in flat fading chan-
nels is multiplicative in nature, the observation is represented
by

yt = htbt + vt.

A typical problem is concerned with sequential detection of
symbols without knowledge of ht.

In [16], a linear model (i.e. an AR or ARMA model) for
the channel variation was adopted, known model coefficients
were assumed, and a generic particle filtering solution with
a prior importance function was proposed. A more efficient
implementation using MKF was reported in [4]. It was used
for systems with Gaussian and impulsive noises and it was
demonstrated to work for uncoded and coded systems. At
the same time, in [24, 25], an almost identical algorithm to
MKF was developed using the Rao-Blackwellization concept.
Blind detection in the presence of impulsive noise by a Gaus-
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sian sum particle filtering detector was proposed in [18]. The
above algorithms assume known channel model coefficients.
When the model coefficients are also unknown, a hybrid al-
gorithm was first presented in [15]. The proposed method
uses particle filtering in conjunction with the recursive least
square algorithm for estimation of the coefficients. How-
ever, pilot signals are required for proper channel tracking.
A fully blind particle filtering detector was reported in [12].
To achieve efficient implementation, the detector employs a
hybrid importance function [13], an MKF, and an auxiliary
particle filter with a smoothing kernel. Further, some prior
information about the underlying communication system is
used to allow for full blind detection.

In addition to linear models, alternative modeling of fad-
ing channels may be preferred, especially if one wants to
capture the nonlinearities of channels. A wavelet-based mod-
eling of fading channels was used in [11], and a blind receiver
employing MKF was proposed. The blind receiver requires
no channel statistics, and it can determine the number of
desired wavelets dynamically.

Apart from the Rayleigh fading channels, detection in im-
pulsive channels was addressed in [17]. The models of such
scenarios resembles that of the Rayleigh fading channels ex-
cept that the impulsive channels are described by an AR
process driven by a mixture Gaussian. To achieve blind de-
tection, a Gaussian particle filtering scheme was developed.

5 Particle filtering for multiuser detection

Optimum multiuser detection (MUD) with or without known
channel state information (CSI) has a complexity that is ex-
ponential to the number of users. Numerous approximate
detectors have been developed in the past to reduce this
complexity. Usually these detectors are based on interim
hard decisions and are therefore prone to error propagation.
As a result, their performance is not near optimum.

The earliest application of particle filtering to joint chan-
nel estimation and MUD appeared in [2] and subsequently
in [26]. There, the Rayleigh flat fading channel is modeled
using a state space equation,

ht = Ftht−1 + Gut (4)

where ht is the channel state vector approximated using an
ARMA model, and F and G are known matrices with coeffi-
cients chosen to fit the spectrum of the fading process. The
observation sampled at the system chip rate is represented
as

yt = b>t StΘht + vt

where bt = [b1,t, · · · , bK,t]
> denotes the data symbols from

all K users, St is a diagonal matrix of spreading codes, and
Θ is a known coefficient matrix corresponding to the MA
part of the ARMA model. Samples of bt are taken from
an alphabet of size 2K , and the channel state is integrated
out as a nuisance parameter. This is equivalent to the MKF
algorithm proposed in [4]. With large number of users, the
sample space of bt grows exponentially and the calculation
of the importance weight becomes computationally very ex-
pensive.

Recently in [32] and [31], an alternative state-space rep-
resentation of CDMA systems based on whitened matched
filter (WMF) outputs was proposed. This representation al-
lows for an efficient application of particle filtering with or
without perfect CSI. In these papers, the observation is writ-
ten as

ȳi = c>k eBiΘhi + v̄i

where i = (l − 1)K + k is derived from the symbol duration
index l and user index k, ȳi is the WMF observation, ck is the
kth column of C, the lower triangular matrix in the Cholesky
decomposition of the signature cross-correlation matrix, and
eBi = diag{b1,l, · · · , bk,l, 0, · · · }. The CSI, hi is modeled sim-

ilarly as in (4). Note that eBi only takes two valid values given
eBi−1 as the particle filtering algorithm evolves according to
index i, and therefore the complexity does not grow expo-
nentially with the number of users. Simulations have shown
consistent near optimum performance with linear complexity
in systems with perfect and unknown CSIs.

6 Estimation and detection of space-time codes
in fading channels

Space-time coding is a powerful tool for exploiting spatial
and temporal diversities to combat fading in wireless com-
munications. Although space-time trellis codes (STTCs) are
deemed to possess the best coding efficiency, they are hard
for detection especially when the problem involves unknown
time varying fading coefficients. Particle filtering is consid-
ered for this problem in [29]. As demonstrated in [4] and
[24], it is quite straightforward to represent binary or M-ary
convolutional (trellis) coded systems in fading channels us-
ing state-space models. In these models, the state variable
(usually the state of the encoder), evolves according to (1),
and the observation is the product of the state variable and
CSI plus noise. and is described in the form of (2). In [29],
a space-time representation of the STTC systems is derived
that has form similar to that in [4]. Inherent to all joint
channel estimation and detection algorithms is the problem
of phase ambiguity. While it is possible to employ differen-
tial coding or to send pilot signals to remove the ambiguity,
it is demonstrated in [29] that one can design STTCs that
have decreased phase ambiguity.

7 Final remarks

Particle filtering is becoming an important method for solv-
ing difficult problems in communications. With further ad-
vances of the method, old problems are resolved more ef-
ficiently, and new, even more difficult problems are readily
addressed with it. A drawback of the method is the high
computational power needed for its implementation. Much
of the processing that takes place, however, can be paral-
lelized, which makes the method potentially attractive for
practical use. A successful hardware implementation of par-
ticle filtering will further boost the research on the theory
and practice of particle filters in communications. Also, re-
search oriented towards reducing the complexity of the algo-
rithms will be very beneficial [30].
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nel estimation and data detection over frequency selec-
tive fading channels using sequential Monte Carlo filter-
ing,” in Proceeding of the CISS, Princeton, NJ, 2002.

[11] D. Guo, X. Wang, and R. Chen, “Wavelet-based sequen-
tial Monte Carlo blind receivers in fading channels with
unknown channel statistics,” in Proceedings of ICC,
2002, pp. 821 –825.

[12] Y. Huang and P. M. Djurić, “A blind particle filtering
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