
PREDISTORTION OF NON-LINEAR SATELLITE CHANNELS USING NEURAL
NETWORKS: ARCHITECTURE, ALGORITHM AND IMPLEMENTATION

F. Langlet, H. Abdulkader and D. Roviras

ENSEEIHT-TeSA, 2 rue C. Camichel 31071 Toulouse cedex France

ABSTRACT

This paper presents the adaptive linearisation of a non-
linear digital satellite communication down link. That link
is made up a 16-QAM modulator, followed by a non-linear
High Power Amplifier, on board the satellite. When using
the amplifier with low input back-off for a maximum
power efficiency, two kinds of distortions occur on the
input signal: amplitude (AM/AM conversion) and phase
(AM/PM conversion). The satellite payload is
regenerative. So, we use a predistortion on board to
linearize the amplifier. We present the predistortion
architecture realized with Multi-Layer Perceptron (MLP)
Neural Networks (NN). Two algorithms associated to that
predistorter are shown and compared: the ordinary and the
natural gradient. The major problem to implement that
predistorter is to get enough bandwidth (100 Mbits/s data
rate). A mixed analog/digital implementation is one
solution to solve it. We analyze the implementation
imperfections effects in comparison with the theoretical
algorithm.

1. INTRODUCTION

In order to comply to the consumer needs, the third
generation of mobile communication systems will have to
combine spectral efficiency and allow high data rates and
power efficiency to allow transmission to small user
terminals. To get power efficiency, the on board amplifier
such as Solid State Power Amplifier (SSPA) is used with
low input back-off, i.e. the amplification is non-linear. To
get spectral efficiency, non constant envelope modulation
(16-QAM) is necessary. This combination involves
problems such as spectrum spreading, constellation
distortion, inter-modulation products, etc.. To solve those
problems, two solutions are available: equalization [2] and
predistortion[5][6]. New satellite generations have
regenerative payloads. Baseband signals I and Q are
available on board. So, it is possible to put a predistorter
on board, between the baseband signal and the down link
input (i.e. the modulator input). Therefor, the regenerative
payload make the predistortion attractive to counteract the
non-linear distortions caused by satellite amplifiers. In this
paper, we present predistortion for regenerative payloads.
Part two will describe the architecture of the satellite

payload with the non-linear amplifier together with the
predistorter. Part three presents algorithms for training the
MLP NN. Part four deals with implementation issues.

2. ARCHITECTURE

Fig. 1 presents the predistortion. The predistortion
baseband input signal (I+j.Q) is the digital signal to
transmit, mapped in 16 QAM, then filtered by a Square
Root Raised Cosine Filter (SRRCF). To overcome the
SSPA non-linearity, that signal is predistorted by a NN
(IE+j.QE), further modulated and amplified by the SSPA.
In the back loop, the signal is demodulated (IR+j.QR) . We
use the gradient algorithm in order to adapt NN
predistorter weights. Finally, the overall system transfer
function is closed to identity (I+j.Q≈ IR+j.QR).

AMPLIFIER
SSPA

MODULATIONNEURAL NETWORK
PREDISTORTION

ALGORITHM DEMODULATION

I+j.Q

IR+j.QR

IE+j.QE

Fig. 1. System architecture

2.1. Memoryless SSPA

This amplifier gives amplitude (Fig. 8a) and phase (Fig. 9)
distortions on the signal complex envelope (IE+j.QE). The
predistortion system is made up three parts (Fig. 2): a
cartesian/polar conversion, the predistortion and the
polar/cartesian conversion. The cartesian/polar conversion
is realized with two MLP NN. One for the modulus (NN3)
and one for the inverse modulus (NN4). For the
predistortion, there are two MLP NNs. One for the
inversion of the AM/AM conversion (NN1) and one for
the AM/PM conversion (NN2). The Fig. 3 zoom the
predistortion part of the predistorsion system. The three
NNs (NN1, NN2 and NN4) have the same architecture
described in Fig. 4: it is a MLP with one input and one
output, one hidden layer (10 neurons) and one linear
neuron in the output layer. The fourth NN (NN3) has the
same architecture as the others except there are two inputs
(I and Q). The polar/cartesian conversion consists in
approximating the two functions (cos and sin) with their
first order limited development.

✕

✕

✕ ✕ +

✕

✕

✕

✕

+

✕

✕

+

+

+

I

Q

Modulus Modulus

Angle Angle

y(2)=φ d(2)= φ + ψ + θ

IR+j.QR

e(2)

e(1)

y(1)d(1)

x(1)

x(2)

NN1

NN2

NN4NN3

cos(φ)

sin(φ)

sin(θ)

cos(θ)

0.5 1

+

-

+-

+ -

y(1)

sin(θ)

cos(θ) cos(φ)

sin(φ)

+

-

sin(φ)

cos(φ)

+

+

IE

QE

SSPA

cartesian/polar
conversion

polar/cartesian
conversion

Predistortion

y(2)

y(3)
y(4)

θ = -ψ

Fig. 2. Predistortion system

φρ jex =
NN1

NN2

ρ

je

Angle

∧
−= ψθ

× MODULATOR-
SSPA-

DEMODULATOR

y

++ -

e(1)

Angle+ +-
e(2)

d(1))1(y

x(1)

x(2)

IE+jQE

I+jQ
IR+jQRModulus

Modulus

y(2)=φ
d(2)=φ+θ+ψ

Fig. 3. Predistortion

2
)(

1, mWx

0
)(mx)(my

1 1b
1

2b
f(.)

1

2

Nh

1
)(mW

+f(.)

f(.)

Fig. 4. MLP Neural Network structure

2.2. SSPA with memory

The SSPA with memory is modeled by a memoryless
SSPA followed by a filter (the memory). To predistort it,
one solution is to identify separately the memoryless
SSPA and the memory to come down to the SSPA
memoryless predistortion case. That is done by the SSPA
with memory identification with a MLP NN mimetic
structure made up two parts [5]. The first one has the same
architecture than the memoryless SSPA, it is non-linear
and computes the AM/AM and AM/PM conversion with
two sub-networks. The second part presents the
architecture of a linear filter. The predistortion
performance is directly linked to the identification
precision. More particularly, it depends of the associated
algorithm. Two different associated algorithms are used:
the ordinary and the natural gradient [4]. In the next
section, we present and compare those algorithms (Fig. 5).
Details of predistorter architecture design can be found in
[5].

3. ALGORITHMS

3.1. Ordinary gradient

The transfer function for one NN can be written as:
[])(b)()().().()(2

)(
1

)(
0

)(
1

)(
2

)()(nnnnfnny mmmmmm ++= bxWW ,

where k
m)(W and k

m)(b correspond respectively to the
thk layer vector and bias vector of thm NN (m=1,2,3,4 in

Fig. 2). f [.] is an activation function (a sigmoid). The

ordinary gradient can be found in [3]. It is summarized
bellow.
1) For NN2, NN3 and NN4 (m=2,3,4):

)()()()()2(nnnnd θψφ ++=

)()()(22
)3(nQnInd +=

)(/1)()3()4(ndnd =
Error calculation :)()()()()()(nyndne mmm −= .

Update of the 2nd layer synaptic weights and biases:

)().(.)()1(1
)()(

2
)(1

2
)(1 nxnenwnw mkmmkmk µ+=+

)(.)()1()(
2

)(11
2

)(11 nenbnb mmm µ+=+
Update of the 1st layer synaptic weights and biases:

)().()()(
2

)()(nenwnE mmkmk =
))()().(().()(1

)(
0

)(
1

)(
'

)()(nbnxnwfnEn mkmmkmkmk +=∆

)().(.)()1(0
)()(

1
)(1

1
)(1 nxnnwnw mmkmkmk ∆+=+ µ

)(.)()1()(
1

)(
1

)(nnbnb mkmkmk ∆+=+ µ

hNk ≤≤1 ,
hN is the number of neurons in the hidden

layer and µ is the learning rate.

2) For NN1:
The ordinary gradient can be computed only if we have the
derivative function of the AM/AM Conversion. One
solution is to identify this conversion with an other NN
associated to the ordinary gradient algorithm. In that case,
we can use the identified model in order to get an
estimation of the derivative function. So, the AM/AM
conversion identification makes the predistortion
technique adaptive [6].

3.2. Natural gradient

NN training procedure is a stochastic process in general. A
NN with a certain structure can be viewed as a
Riemannian manifold spanned by its coefficient vector.
Each point of the manifold represents a probability
distribution p(x,y,θ), where x is the input vector, y is the
target vector and θ is the vector of NN coefficients
considered as the manifold coordinates. The NN manifold
is a submanifold of the manifold of all the distributions
p(x,y). From a geometrical point of view, the ordinary
gradient is a covariant vector. To apply the ordinary

gradient for training the NN, it must be transformed by a
contravariant tensor (the metric of the manifold) to form a
contravariant vector. The matrix metric of the manifold is
the Fisher information matrix given by the relation [1]:

() ()












∂
∂

∂
∂=

ji

ij

yxpyxp
Eg

θ
θ

θ
θ ,,log,,log

Hence the updating rule of the coefficient vector
becomes:

() () lGnn ∇−=+ µθθ 1 ,

where µ is the learning rate and ∇ l is the ordinary gradient
vector. Details of the natural gradient algorithm can be
found in [8]. We compare both algorithms applied to the
considered down link channel identification, for a SSPA
with memory. Fig. 5 presents the Mean Square Error
(MSE) evolution. With the natural gradient, the
identification performance is about 25 dB better in
comparison with the ordinary gradient [4].

0 50 100 150 200 250 300 350 400 450
10-6

10-5

10-4

10-3

10-2

10-1

100

X 1e4 iterations

Ordinary gradient

natural gradient

(V2)

25 dB

Fig. 5. MSE evolution with ordinary and natural gradient

4. IMPLEMENTATION

4.1. Introduction

The MLP NN implementation approach is determined by
the high data rate. In fact, with a 100 Mbits/s data rate and
a 16-QAM modulation, the maximum bandwidth of the
input signal (I+j.Q) is 25 MHz (when the SRRCF roll off
is 1). Moreover, the MLP NN transfer function digital
implementation (30 multiplication, 11 additions and 10
hyperbolic tangents) must be computed in 40 ns (for one
sample by symbol). Actually, it is impossible to realize
this computation in such a time. So, the MLP
implementation must be analog. For the algorithm, the
down link variations (which depend of the temperature and
the ageing process), are very slow in comparison with the
data rate. To get the good down link predistortion pursuit
(for an adaptive predistortion), the updating weights and
biases cycle is 0.25 hour. In that case, we have the choice
between an analog or digital implementation. We chose
the digital solution for two reasons: The precision of
computation and the flexibility [7]. As the implementation
of the system is mixed, we decided to implement it in a
CMOS technology. Fig. 6 presents the mixed
implementation of the MLP NN associated to the ordinary
gradient algorithm. In order to model the most important
imperfections witch are linked to the implementation, we

consider each part of the algorithm in the next sub
sections [6].

4.2. Weights and biases loading (nth iteration)

Each weight and bias is analog (capacitive storage). New
values are loaded via N bits Digital Analog Converter
(DAC). The DAC imperfections are modeled by two parts:
weights and biases coding in signed fixed point format and
the quantification. The algorithm robustness is tested by
varying N [6].

Weights and Biases of nth iteration

DAC
DIGITAL

ANALOG

✕

W12(n)

✕

W22(n)

✕

W102(n)

+ Output(n)

✕

B12(n)

10 mV

✕

B11(n)

10 mV

+✕

W11(n)

+✕

W21(n) ✕

B21(n)

10 mV

+✕

W101(n) ✕

B101(n)

10 mV

Sigmoid between
 ± 10 mV

Input(n)
Sigmoid between

 ± 10 mV

Sigmoid between
 ± 10 mV

ADC
DIGITAL ALGORITHM

Weights and Biases of n+1th iteration

Fig. 6. NN mixed implementation

4.3. Forward propagation and storage

The multiplication function (used for the weights and the
biases) is implemented with a Gilbert multiplier MOS
version (Fig. 7a). The sigmoid function is implemented
with a simple MOS differential stage (Fig. 7b). Both of
these imperfections are modeled. Then, we test the
algorithm robustness by varying the multiplier non-
linearity and the sigmoid linear slope [6]. Finally, we store
(capacitive storage) all the values in order to compute the
algorithm: the NN input and output, the sigmoid outputs.
To close this phase, we define the technology. To get the
NN bandwidth, a transistor with small channel length is
needed. The NN voltage dynamic range is around 1 V. We
choose a 0.18 µm transistor (the maximum dynamic is 1.8
V).

4.4. Back propagation

This part of the algorithm is digital. The weights and
biases update are computed with the stored values we get
in the previous phase. To convert those values in digital,
we model a N bits Analog Digital Converter (ADC). The
ADC imperfections are: the quantification step and the
signed fixed point coding. We also test the algorithm
robustness by varying N [6]. At the end of this part we get
the new weights and biases for the n+1th iteration.

Ve1

Ve2

Is1 Is2

Vdd

Vss

R R

Vs

Vs=K✕ Ve1 ✕ Ve2

VPOL

Vdd

Vss

(a) (b)

Fig. 7. (a) multiplier and (b) sigmoid implementation

4.5. Global simulation

In this simulation, we present the down link linearization,
for a memoryless SSPA, by predistortion. All the mixed
implementation predistorter imperfections are modeled.
For the DAC and the ADC, the number of bits N is set to
12. For the Gilbert multiplier, the maximum non linearity
error is set to 5 %. For the MOS sigmoid, the maximum
slope variation is set to 5%. After 2.106 iterations, the NNs
have converged. We present respectively on Fig. 8a, 8b
the down link AM/AM conversion without and with
predistortion. We also present on Fig. 9 the down link
AM/PM conversion with and without predistortion. We
define the Signal to Error Ratio SERI (SERQ) for the I (Q)
component, where the signal is the input predistortion I
(Q) Component. The error is the difference between the
input predistortion I (Q) and the output down link IR (QR)
(see Fig. 1). The SER for the I and Q components at the
end of convergence is:

dBSERSER QI 38== .
Without predistortion we get

dBSERSER QI 20== .

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.005

0.01

0.015

 Down link input module without predistortion (V)

D
ow

n
lin

k
o

ut
pu

t m
od

ul
e

 (
V

)

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
0

0.005

0.01

0.015

(b)(a)
 Down link input module with predistortion (V)

D
ow

n
lin

k
o

ut
pu

t m
od

ul
e

 (
V

)

Fig. 8. (a) Down link AM/AM conversion and (b)
linearized down link AM/AM conversion

without predistortion

with predistortion

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016

1

0

-1

-2

-3

-4

-5

Down link input (V)

D
ow

n
li

nk
 A

M
/P

M
 o

ut
pu

t
 c

on
ve

rs
io

n
(D

eg
re

es
)

Fig. 9. Linearized down link AM/PM conversion

5. CONCLUSION

We have Presented a new adaptive predistortion for a
down link digital communication with 100 Mbits/s data
rate.

For the algorithm part, we shown that a NN
associated to the ordinary gradient algorithm is a good
approach to linearize a memoryless down link. For a down
link with memory, the predistortion performance depends
on the precision of the down link identification. To get
enough precision, one solution consists to identify that link
with a NN mimetic structure associated to the natural
gradient algorithm. Moreover, this algorithm increases the
precision of the identification of 25 dB in comparison with
the ordinary gradient.

As regards to implementation, we have shown that
the mixed analog/digital approach is forced by the 100
Mbits/s data rate. We have modeled the majors
implementation imperfections i.e. the DAC, ADC,
multiplier and sigmoid. Simulation analysis shows that the
algorithm is enough robust to support all the
implementations imperfections. Moreover, the
predistortion increase the SER by 18 dB.

6. REFERENCES

[1] S. I. Amari, “Natural Gradient Works Efficiently in
Learning”, Neural Computing 10,251-276 (1998).

[2]. S. Bouchired, M. Ibnkahla, D. Roviras and F.
Castanié, '”Equalization of satellite mobile channels with
neural network techniques”, Space Communications 15,
IOS Press, pp. 209-220, 1998/99.
[3] Simon Haykin, '”Neural Network: A Comprehensive
Foundation'”, Prentice Hall, 1994.
[4] F. Langlet, H. Abdulkader, D. Roviras and F. Castanié,
“Comparison of Neural Network Natural and Ordinary
Gradient Algorithms for satellite Down link
Identification”, Proc. of ICASSP 2001, Salt lake City.
[5] F. Langlet, H. Abdulkader, D. Roviras, A. Mallet and
F. Castanié, “Comparison of Neural Network Adaptive
Predistortion Techniques for Satellite Down Links”, Proc.
of IJCNN 2001, Washington DC, USA, July 2001.
[6] F. Langlet, D. Roviras, A. Mallet and F. Castanié,
“Mixed Analog/Digital implementation of MLP NN for
Predistortion” ”, Proc. of IJCNN 2002, Hawaii, USA, May
2002.
[7] F. Langlet, M. Ibnkahla, and F. Castanié, “Neural
Network Hardware Implementation : Overview and
applications to satellite Communications”, Proc. of
DSP’98, ESA, Nordwick, Holland, September 1998.
[8] H.H. Yang and S.I. Amari, “Training Multi-Layer
Perceptrons by Natural Gradient descent”, In ICONIP’97
Proceeding, new Zealand.

	PREDISTORTION OF NON-LINEAR SATELLITE CHANNELS USING NEURAL NETWORKS: ARCHITECTURE, ALGORITHM AND IMPLEMENTATION
	ABSTRACT

