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ABSTRACT

Tree-structured dictionaries of orthonormal bases
(wavelet packet/Malvar’s wavelets) provide a natural
framework to answer the problem of finding a “best
representation” of both deterministic and stochastic
signals. In this paper, we reformulate the “best ba-
sis” search as a model selection problem and present a
Bayesian approach where the decomposition operators
themselves are considered as model parameters. Denois-
ing applications are subsequently presented to substan-
tiate the proposed methodology.

1 Introduction

Basing multiscale representations of signals embedded in
noise on statistical approaches has recently been of great
research interest [4, 2, 6]. The optimization of represen-
tation typically takes place over a tree-structured dic-
tionary of orthonormal bases (wavelet packet/Malvar’s
wavelets), and aims at statistically distinguishing the
signal components from those of the noise. These clas-
sical dictionaries, in turn, may be extended to more
general decomposition trees by considering node-varying
decomposition operators.

In this paper, we define the “best basis” search in
these generalized dictionaries in a fully Bayesian per-
spective by considering the dictionary itself, and subse-
quently the optimal representation, as model stochastic
parameters. Since a complete statistical description of
the “best basis” 1s provided in this context by its pos-
terior distribution, the objective is not necessarily to
derive an estimate based on the decomposition onto the
“best basis”. As a consequence, this framework is par-
ticularly useful to obtain a posteriori mean estimates ob-
tained by averaging signal estimates on distinctive bases.
In the sequel, we introduce nonstationary decomposition
trees in reference to the so-called nonstationary wavelet
packets and present a Bayesian model for signal repre-
sentation in denoising applications. We then propose
a reversible jump Markov chain Monte Carlo (MCMC)
sampler [3] to deal with the variable-dimension problem
induced by the chosen non-homogeneous priors on the
signal transformations.
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2 Nonstationary decomposition trees

Let R with K = 2P, p & IN*, denote the space of real
discrete-time signals of length K. Discrete decomposi-
tions on the interval are used throughout the paper. We
define the dictionary D of possible representations with
the help of a finite set of decomposition operator pairs

S={(F,6)1,...,(F,G)n} through the relations

Boo = Uiy {8[n — k]}n:L...
Bit1,2m = F; 1 FjmBjm,

Bjt1,2m+1 = G5 1, GjmBim,

K’

)

subject to

L
Spani{B; m} = Span{Bj i1 2m} © Span{Bji1 2m+1},

for all (Fjm,Gjm) € S. We recall that (}";m,g;m)
corresponds to the recomposition adjoint operator pair
while B; ,,, denotes the orthonormal basis correspond-
ing to the node (j,m) (with j € {0,...,J} and m €
{0,...,2/ —1}) of the dictionary. In other words, these
decomposition operators realize the following partition
of 1dentity

FimFim + G5 mGim = 1.

An orthonormal basis of R¥ is subsequently obtained
according to Bz = U m)/1; .czBjm where T is a par-
tition of [0, 1[ in intervals I;,, = [279m, 279 (m + 1)],
similarly to the wavelet packet case [10]. We point
out that this general framework encompasses Malvar’s
wavelets, possibly nonstationary wavelet packets [1],
and (by straightforward extensions) M-band wavelet
packets [8]. We now state the problem under study.
We assume the following model for the observation of a
random process realization

yt) = z@)+w(t), te{l,... K},

where w(t) is i.i.d. normal, with zero mean and finite
variance o2, although more general noise models may be
adopted in some cases [5]. Recovery of the underlying
unknown signal z(¢) is of interest. Given a risk to be



minimized (typically the mean square error), the ideal
estimation would require an oracle for the optimal de-
composition basis B* which is completely characterized
by the corresponding sequence of optimal decomposi-
tion operators. This oracle is of particular interest for
practical applications such as underwater acoustic sig-
nal processing where a wide variety of phenomena are
encountered, implying that B* is not a prior: known.
Then, in a Bayesian framework, the oracle for B* is pro-
vided by the posterior distribution p(B8* | y) which, in
turn, is used to nonlinearly estimate the underlying sig-
nal of interest. In the sequel, we take advantage of the
binary tree structure of the decompositions to propose a
Bayesian approach to the involved integration problem
based on stochastic algorithms.

3 Bayesian framework

Let %" denote the K-dimensional vector of time sam-
ples of the underlying process z(t) in B*. TFollowing
[6, 5], we choose non-homogeneous Bernoulli-Gaussian
priors to reflect the desired parsimonious representation
of the process % . Using the orthonormality property
of the decompositions, we subsequently obtain

K277
Py | B0 =TT [(1=cim)awn k]| o)+
k=1
6jymg(y6;’m[k] | &im) ) (1)

where g(- | s?) denotes the Gaussian A(0,s?) PDF and
0’ = [ejm, 03 ), With 3, > ¢®. In other words,
the noise statistical properties remain unchanged in any
basis of the dictionary. This mixture model is used in
tandem with an allocation hidden vector ¢* of indepen-
dent random variables defining the following conditional
densities

Py k] [ @k =0) = g(y®n[k]]o?)
pyS | Gkl =1) = g(ySnlk] |67,

with P(q;,,[k] = 1) = €;m € [0,1]. We recall that
the set of model parameters (including here B*) are
distributed in a Bayesian framework according to prior
probabilities providing the posterior distribution of in-
terest

p(B*, 0%, q" | y) x p(y® | B",6",q7)
p(67,q" | B*)p(B%),

where 6% = [0, U(jm)/5,,.c5+0;,,]. Note that our
state of knowledge concerning the functional/statistical
nature of the signal under study is now expressed by
the likelihood function (1) and priors p(H*, q* | B*) and
p(B*). In particular, this latter distribution expresses
our degree of belief (or ignorance) concerning the opti-
mal dictionary and the associated decomposition bases.

We further assume that the parameter vector prior reads
p(g*’ q* | B*) — p(O_Z | B*)

I[I  P@mlemp(E | o),
(G,m)/85,mCB°

to provide an independent local modeling of »® . In
order to minimize the mean square error, we propose
to estimate the signal @ using the posterior expectation
[« | y] which is expressed as

E[Zli |y]:EB*,9*,q* E[Zli |B*’6*aq*ay] ’ (2)
with

E[asz,m[k] | 9;m, o2, q;m,yBj,m] =
5, — 0’ .
L [K]y P K],
o=
im
for the involved model (1). The evaluation of (2) be-
ing analytically intractable, we resort to reversible jump
MCMC methods to answer the problem of dimension
changing of the parameter space induced by the non-
homogeneous likelihood.

4 Reversible jump MCMC sampler

We recall that MCMC algorithms allow the construc-
tion of ergodic Markov chains whose equilibrium distri-
bution corresponds to a target posterior density (given
by p(B*,6%,q* | y) in our problem) upon which any
Bayesian inference is based. In particular, the posterior
expectation (2) may be approximated for N > 1 by

N-1
> Ea | B, 67, g7y,
0

n=ng

1
N —

Fa | y] ~

where ng < N denotes the burn-in period of the
chain, under mild conditions (namely aperiodicity
and irreducibility) on the generated Markov chain
{(B*(”),H*(”),q*(”));n = 0,..., N — 1} Possible
moves of the chain are defined through the following
randomly scanned tansition kernels

(a) a change in the decomposition operators (Fj m, Gjm)
at a randomly chosen node (j, m),

(b) a change in the parameter vector [, o*] and allo-
cation variables gj ,, where (j,m) is a terminal node,
(¢) a new decomposition, i.e. the addition of two termi-
nal nodes,

(d) a recomposition, i.e. the deletion of two terminal
nodes.

Those transition kernels satisfy the desired (weak) con-
vergence conditions. Note that the last two transitions
induce a change in the parameter subspace dimensional-
ity and make 1t compelling to resort to reversible jump
samplers. The principle consists of defining here a move
from 0;, to (84+1,2m,6541,2m+1) with the help of a



reversible deterministic function f;;11(-) along with a
random vector w € R? (8; ,,, € [0,1] x R) verifying

(05+1,2m,0j41,2m+1) = Fij+1(685,m,u).

The random vector u completes the parameter space at
resolution level j in order to define a common dominat-
ing measure. We choose to generate a two-dimensional
random vector of independent beta Be(3, 3) variables to
obtain the new parameters according to

Eit1,2m = 2U1Ejm,
Ejt1omi1 = 2(1—wui)ejm,
. =2 S
Ej+1,2m05 41 am — 2U2E5,m 05 oy,
~92 _ =2
€541,2m+10541 2m+1 = 2(1 - UZ)EJ,mUj,ma

subject to the model constraints (€541 2m,€j+1 2m+1) €
[0, 1], 5"72»+172m > 0% and 5"72»+172m+1 > ¢2. Note that this
setting results in the following reconstruction equations
(i.e. the inverse transformation f;jl-|-1(') associated with
the recomposition move (d))

€i4+1,2m T €j41,2m+1

Eim = 9 ’
. =2 _|_ . =2
=2 E412mO5 41 am T E5+1,2m410541 2mt1
6]7m0-j,m - 9 )

which amounts to the conservation of energy for the
signal component in the mixture. The Jacobian of the
transformation is then given by

8¢ md7 ,,
j — J5 7, )
Ul(l — Ul)

Similarly to the classical (i.e. without dimension chang-
ing) Metropolis-Hastings (M-H) algorithms, the param-
eter vector proposal (8541 2m,0;4+1,2m+1) in the decom-
position move is then only accepted with probability
«; j+1 given (using simplified expressions) by

p(s' | y)P(gjm)

p(s | y)P((qj+1,2m’qj+1,2m+1))

pj+1,3J }
pu(w)pjj+1

ajiy1 =ming 1,

In the previous expression, the symbol s =
(Bj,m,gj,m,q‘j,m) stands for the current state, while
s = ((Bjt1,2m; Bit12mr1), (8541,2m,0541,2m+1),
(@511 2m qj+172m+1))) corresponds to the proposal, and
pj,j+1 denotes the prior probability of the decomposition
move which depends on the current representation ba-
sis. The proposal for (11 9,441 2m+1) 13 obtained
using the full conditional distribution given the pro-
posed parameter vector (8;41,9m, 8541 2m41). Conse-
quently, the chain remains in its previous state with
probability 1 — «; ;41, which in particular guarantees

the desired aperiodicity condition. Note that our choice
for moves (¢) and (d), involving two consecutive de-
composition levels, corresponds to the simplest basis
update, and more general transitions may be alter-
natively /additionally proposed to move more rapidly
across the tree. The parameter vector update (move (b))
is implemented using conjugate beta and inverse gamma
priors for €5, and (&?ym, 0?) respectively, through the
classical Data Augmentation algorithm [9, 7]

p(o? | ™, y""),
grintl) p(g;ym |02(”+1),q;(”),y5?,m),

J,1m m

0_2(n+1)

i (g |65 020y,
We finally choose to implement an M-H step for move
(a) by first selecting a node (j, m) at random in the cur-
rent decomposition tree, and then drawing a proposal
(Fjm,Gjm) from the prior distribution on the operator
set §. Without additional information, this distribution
is considered as uniform. This operator pair provides in
turn a new decomposition basis and is likely to mod-
ify the representation at children nodes (j',m’), with
J' > j such that B;: s belongs to the current basis. We
therefore simultaneously update the associated param-
eter vector 6 ,,» with proposals drawn from their prior
distribution, while g;, ,,,, is again obtained using the full
conditional distribution given the proposed parameters.

5 Simulations

To show the interest of the proposed method, we present
the results obtained with two examples of underwater
acoustic signals given in Fig. 1. The first process corre-
sponds to a biological signal involving transient phenom-
ena while the second one is artificial and corresponds
to a modulated waveform. In both cases, the noise
level results in a Signal-to-Noise Ratio of 0 dB. The set
of decomposition operators is composed of three uni-
tary transforms given by a single level wavelet packet
decomposition, a time segmentation and a discrete co-
sine transform, providing enough structure to reproduce
both wavelet packet (WP) and Malvar’s wavelet (MW)
decompositions. The maximum level of decomposition
was fixed to J = b and the parameter informative priors
are given by ¢; ,, ~ Be(1, 3), &?,m ~IG(1, 1/2312!5) and
o? ~ Ig(3,1/4355) subject to &?,m > ¢2. The prior
distribution on ¢, ,,, expresses the desired parsimonious
character of signal representations, while the mode of
the variance priors corresponds to a robust estimate of
the variance of y in the current decomposition basis de-
noted by 355. Indeed this estimate is close to ¢? when
the decomposition onto the basis B leads to a parsimo-
nious representation of the signal of interest. Our ap-
proach is then compared in terms of normalized mean
square error (NMSE = || — ||3/||®||3) to the two cor-
responding best basis selection algorithms introduced in
[6] using the same model (1). Note that, in this latter



work, a maximum likelihood/generalized likelihood ap-
proach was used to determine the “best basis”. This
approach was shown to provide improved performances
with respect to classical thresholding policies.

(b) (d)

Figure 1: (a) biological signal, (b) artificial signal, (c)
and (d) noisy versions of (a) and (b) respectively.
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Figure 2: (a) and (c) biological signal estimates using
WP (NMSE = 0.35) and Posterior Expectation (NMSE
= 0.29) respectively, (b) and (d) artificial signal esti-
mates using MW (NMSE = 4.6 10~%) and Posterior
Expectation (NMSE = 3.5 107%) respectively.

For illustration, the results obtained with the proposed
algorithm are presented in Fig. 2 along with the esti-
mates derived in the best (fixed) dictionary using the
approach developed in [6]. As expected, our approach
demonstrates its adaptation properties to the unknown
signal of interest.

6 Conclusion

In this paper, a fully Bayesian approach to “best ba-
sis” representation of noisy signals over tree-structured
dictionaries of bases has been presented. This approach
makes use of non-homogeneous statistical models, and
hinges upon the construction of a Markov chain whose
stationary distribution corresponds to the posterior dis-
tribution of interest. This Markov chain, in turn, is
used to nonlinearly estimate the underlying signal via
posterior expectation.
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