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ABSTRACT

The segmentation of a signal based on a piecewise polyno-
mial model is reexamined here in light of the recent advances
in applying the MDL principle to the exponential density
family. The critical case of discriminating between short
segments is handled very efficiently by using the exact MDL
formula for small sample size, whereas MAP or AIC methods
result in drastic over-segmentation. The simulation result for
ECG segmentation shows that the piecewise linear approx-
imation obtained with the proposed method preserves well
the location of the QRS complex.

1 INTRODUCTION

The segmentation problem we address in this paper refers
to finding the transition times when observing n samples
Y0,Y1,---,Yn—1 Of a piecewise polynomial signal in additive
gaussian noise. At unknown time instants, T1,...,7T_1,
some parameters in the model (polynomial coefficients or
noise mean and variance) changes abruptly. The observed
samples in each segment ¢ are represented as

yt=g;£t+€t, Ti1<t<T;, To=1 (1)

where 3, is the ki-dimensional regressor vector, the regres-
sion vector is z, = [1 (t — Ti—1)* (t — Ti_1)*¥ 1] for
Ti-1 < t < T, r is the total number of segments, and
To = 0, T = n. The symbol ' denotes transposition and
the observation vector is denoted gg = [yo y1 --- Yn-1]-
The n; = T; — T;—1 observations in the i-th segment can be
written in vector form:

Yr;_, /31:1' ET;_4
YT;_1+1 Bz, ET;_1+1
. = X . + .

Yyr; 1 ﬂki,’i ET; -1
| — —_— ———
T; )

vr! B, =

i—1

where the polynomial on segment i has degree k; — 1. The
entries er;_,,er;_,+1,...,€7;—1 of the noise vector g, are
ii.d. samples from a zero mean gaussian source with variance
7; = 02 and the regression matrix is
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Given yo,¥1,---,Yn—1, the objective is to estimate the
number of segments, their boundaries, the degrees and coef-
ficients of polynomials and the noise variance for each seg-
ment.

The hypothesis of zero mean Gaussian noise implies
that the measurements for each segment ¢ are dis-
tributed according to the probability density function (pdf)
i 1,1; ks (Q? . |§i,n) which has the expression:
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Since the segments are statistical independent, the pdf for
the set of observations gg is :
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which depends on the sequence T' = Ty, T, ...,T, of com-
mutation times and on the sequence K = ki,k2,...,k, of
numbers of coefficients of polynomials. We rephrase the
segmentation problem by using the MDL terminology: we
denote ¢ = {r,T,K} the class (structure) of the model

and for each ¢ define the set of model parameters §¢) =

gf),éég),...,éig),rl(g),rz(g),...,'rr(g) The class of the
model £ defines a partition of the original data g(’)‘ in non-
overlapping equivalence classes [3] (one equivalence class is
associated with each segment) and due to this property the
likelihood function (2) factors into a product of individual
likelihood functions and the stochastic complexity [1][5][6] is
obtained by summation of the stochastic complexity for each

segment. We also need to consider the stochastic complexity
L(&) associated to &.

For a given £ a linear regression problem has to be solved
for each segment 4, the stochastic complexity being given

by —log f; (Eil_l |k;) where f; (g%:_l |k;) denotes the Normal-

i

ized Maximum Likelihood (NML) density function [1][6]. In
[7] two exact expressions were derived for the NML density
function in the particular case of linear regression problem:
the first one depends on two (hyper)parameters and the sec-
ond one is parameter free. We will use in the sequel the
parameter free expression given by equation (19) from [7].

Summarizing, solving the segmentation problem reduces



to the minimization of the stochastic complexity criterion:

é: argmin, {L({) - Zlog fi(gg_l |k2)} (3)

i=1

Since the code length for the number of coefficients of poly-
nomials k1, k2, - ..,k does not have an important contribu-
tion to the term L(§) we will neglect its contribution. It
remains that L(£) is given only by the code length for encod-
ing the number of segments, r, and the commutation times
To,T1,-..,Tr. The next section introduces several alterna-
tive expressions for L(§).

2 THE COMPLEXITY OF THE MODEL CLASS

Before discussing the complexity of the model class we need
to introduce the model of the commutation times. Let §; be
the binary random variable which takes value 1 when ¢ is a
commutation time (¢ € {To,T1,...,T,}) and is 0 otherwise.
We can associate to a given segmentation the binary string
6o obtained by concatenating the values of §; at the time
momentst =0,1,...,n—1. We assume that the components
of the string are i.i.d. and distributed according to Bernoulli
law with unknown parameter ¢ (§; = 1 with probability g).

A natural choice in obtaining an expression for L(§) is to
first encode the number of segments and then the actual seg-
mentation conditioned to r. If we consider that all possible
values for the number of segments are equally likely, and once
the number of segments is known any segmentation scenario
is equally likely, it follows from the combinatorial complexity
formula [3][5] that:

L() -1ogn+log( nol ) )

Another approach is to code directly the binary string
8¢ . If m(q) is the prior for the parameter g, the stochastic
complexity of the string is given by [5]:

L(¢) = —10g/ q"(1—q)" "m(q)dg (5)

When 7(g) is the uniform prior (situation which corresponds
to the Laplace estimator) the expression (5) can be exactly
evaluated and

Lz (€) = log(n + 1) + log ( " > (6)

The difference between (4) and (6) results from considering
in the Laplace estimation of the all zero string as a legal
string 43 .

The Krichevski-Trofimov estimator is obtained when 7(q)
is the Dirichlet distribution with parameters (%, %) [9]:

Tg(l-g""
o m/(1—-4q)q
A relevant property of Krichevski-Trofimov estimator was
established in [9]: the difference between Ly (€) and the
empirical entropy is uniformly upper bounded by log(2+/n).

By using the canonical prior, we can derive the exact ex-

pression for the stochastic complexity given by NML estima-
tor [3] Lvamr(§) = H(n,r) + log(Cr) where
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Lir(€) = —log dq (M)

and H(n,r) denotes the empir-

ical entropy — log [(%)T (T)n_r] . We prove in Appendix

that the difference between Lz (§) and the empirical en-
tropy is uniformly upper bounded by log(ey/n) (e is base of
the natural logarithm). We note that a similar bound exists
for Krichevski-Trofimov estimator, but does not exist for the
Laplace estimator. These bounds can be also related to the
redundancy of the code. The optimality of NML code was
already proved in [8].

The last possibility we consider for coding &3 is to apply
the two-part code [5][6]: first the estimated parameter § is
coded and then the entries of the string are coded by using
the already known value of §. In this case the stochastic
complexity is given by [3]:

Lrp(€) = —rlogr—(n—r)log(n—r)+nlog n+log(n+1) (9)

To have an intuitive idea about how the different estimators
apply to the segmentation problem, let consider the values of
L(¢) when n = 100 and the number of segments (the number
of 1’s in the string d7) varies from 1 to n — 1. We observe
in Figure 1 that the shape of stochastic complexity (NML
estimator) corresponds to the shape of the entropy function.
In this case the stochastic complexity penalizes partitionings
with greater number of segments up to n/2; beyond this limit
the complexity decreases with the number of segments. In
Figure 2 we consider the differences between the stochastic
complexity for the estimators presented in this section and
the empirical entropy. The code length obtained with the
NML estimator is the closest to the empirical entropy.

Stochastic complexity [bits] (NML estimator)

1 1 1 . 1 1
[ 10 20 30 40 5 70 80 % 100
No. of I's in the binary string

Figure 1: Dependence on the number
of segments of the stochastic complexity
given by the NML estimator

3 Approximating a signal with piecewise linear seg-
ments

In order to exploit the local linearity of certain types of sig-
nals we need sometimes to approximate the original signal
with a “continuous broken line”. Finding the best segmen-
tation of a signal with straight lines is usually done by min-
imizing a criterion of the approximation errors for a given
number of segments; the number of segments may also be
optimized, e.g. such that errors are bellow an upper bound.
It is important to note that in some applications even in the
case when an approximation by straight lines achieves a low
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Figure 2: The differences between the
stochastic complexity for the analyzed es-
timators and the empirical entropy

cumulative approximation, it may be objectionable because
some essential features of the original signal are lost.

In the case of ECG signals, the continuous broken line
approximation is used as a preliminary step before auto-
matic signal interpretation, and also as a lossy compression
method. In both cases it is crucial that the approximation
does not affect the important features, i.e. location of QRS
complex.

The approximation of the signal with a continuous bro-
ken line is a particular case (fixed k; = 2) of the problem
described in the previous section: the number of segments
r and their boundaries T1,...,T, have to be estimated and
for every segment ¢ we have to estimate the gaussian noise
variance 7; and two polynomial coefficients. The use of min-
imum stochastic complexity as criterion is appealing since it
is parameter free.

4 Experimental results

Two experiments were performed in order to evaluate the
performance of MDL criterion in approximating a signal with
piecewise linear segments.

In the first experiment we generate a data sequence (bro-
ken line) with length n = 100 where the first 50 sam-
ples are extended by periodicity, and then white gaus-
sian noise is added. The first 50 samples are generated
with the polynomials with the following coefficient vectors:
B, = [1000,1010]', B, = [5000, —100]', 53 = [-1000, —100]’,

B, = [-6000,500]', B, = [3000,40]". Hence the “true seg-
mentation” consists of r = 10 segments and the commuta-
tion times are: Top = 0, 71 = 10, T> = 18, T5 = 33, Ty = 42,
Ts = 50, Ts = 61, Ty = 69, Ts = 84, Tp = 93, Tio = 100.
The additive gaussian noise has zero mean and the variance
is the same for all segments 74 = 72 = -+ = 719 = o>. During
the experiments 3 different values for noise standard devia-
tion were considered: o = 0.01,0.1,1.0. The minimization
of the segmentation criteria was done for 100 different real-
izations for each value of noise variance. We compare the
results when using the MDL, MAP and AIC criteria (the
setting for the last two methods is the one used in [2]). We
selected as MDL rule the expression (3) where the second
term is given by equation (19) from [7] and the first term is
the NML estimator as it was described in Section 2. Since

both terms of expression are obtained by applying the NML
technique we use the name NML (instead of MDL) in Table
1 to avoid confusion with older forms of MDL criterion.

The computation of MAP and AIC rules was done in con-
formity with the equations (9), respectively (16) from [2].
Since no restriction on the number of possible segments is
imposed, the computational complexity of brute force eval-
uation of the criteria for all possible sequences Ty, ..., Ti00
is extremely high. We use a dynamic programming scheme
for the efficient evaluation of all criteria.

Table 1 shows the estimated number of segments (7)
for three different values of noise standard deviation (o).
The best results (perfect segmentations) are obtained with
NML(MDL) rule, while the MAP and AIC grossly overesti-
mate the number of segments when the noise variance be-
comes large. The result of the experiment strongly favor the
use of NML algorithm for the segmentation of noisy signals.

The second experiment was performed for the piecewise
linear approximation of ECG signals by using NML rule
(with possible applications to signal analysis or signal com-
pression before storing). The original ECG signal sampled
at 100 Hz was split in non-overlapping frames, each frame
containing 100 samples (slightly more than one period, the
heart rate being 69 beats/minute). The original ECG signal
contains 10000 samples, the total number of frames is 100.
The dynamic programming scheme for determining the best
criteria was applied independently for each frame. The lin-
ear regression term in the stochastic complexity criterion is
always the same, namely NML criterion, but for the term
accounting for the complexity of the model structure we al-
ternatively tested all the estimators described in Section 2.

The result of the experiment was that for all the estimators
described in Section 2 the same segmentation of the ECG
signal was obtained (same number of segments and same
changing points inside each frame).

This leads to the same value of the percent root-mean-
square difference (PRD) measure. The PRD is a com-
monly used indicator for ECG segmentation and is given by
llg? —y2 ]

Myl
is the broken line which approximates the observations yg.

%100 where ||-|| denotes the Euclidean norm and g7

The PRD takes the same value for all the estimators, but we
remark that coding the changing times with NML technique
ensures the smallest stochastic complexity. Regarding the
whole scheme as a lossy coder it results that the NML esti-
mator guarantees the best tradeoff between code length and
the PRD. Figure 3 shows the estimated number of segments
and the PRD for the considered 100 frames. A very impor-
tant property of the obtained segmentations: all algorithms
conserve the location of QRS complex which is essential for
accepting the method as a valid ECG lossy coding method.
Figure 4 presents an example of how the piecewise linear
approximation preserves the features of the signal.

5 Appendix

We have to prove Cp, < ey/n. After some computations
and by using the general forms of the Abel identities [4] we

obtain:
n! nk n! ,
Cp=— E T < —e (10)

nle™

We consider the sequence (an)nzl, an = mm and will prove

that (an)n>1 is a decreasing sequence. Then the inequality
for C, will result from (10) and the observation a; = e.
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Figure 3: The estimated number of seg-
ments and the percent root-mean-square
difference (PRD) for 100 frames of ECG

signal
Criterion o 7
10 11 [12,15] [16,19] > 20
NML 0.01 | 100 O 0 0 0
0.1 [ 100 O 0 0 0
1.0 | 100 0O 0 0 0
MAP 0.01 | 100 O 0 0 0
0.1 37 11 43 9 0
1.0 0 0 0 36 64
AIC 0.01 0 0 0 0 100
0.1 0 0 0 0 100
1.0 0 0 0 0 100

Table 1: Values of 7 (estimated number of segments) ob-
tained segmenting 100 noisy realizations of a piecewise
straight line by the methods using the following criteria:
MDL(NML), MAP and AIC. The true r was in all cases
r = 10.

. an41 ( n
Since = =e(;q

quence (an)n>1 results from the inequality

)n+1/2, the monotonicity of the se-

n+1/2
(" + 1) >e (11)
n
Let’s define f : Rt = R,f(z) = (mjl)zﬂﬂ. The derivative

of In[f(z)] is given by

rx+1 2z +1
g(m):ln( : )— Selo 7 1) (12)

By applying the substitution a = 141_/712/2, g(z) becomes

1+« 2a
9(a) = hl(l—oz)_l—oz2
Y PO S .
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Figure 4: (top) Original ECG signal; (middle) piecewise linear
segmentation; (bottom) approximation errors.

Hence f(z) is a decreasing function, which implies that the

n+1/2 , . .
sequence (bn)n>1,bn = (nT'H) / is decreasing too. Since

limy, 0 bn = e the inequality (11) results directly.
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